Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets

被引:0
|
作者
Yang, J [1 ]
Peng, W [1 ]
Ward, MO [1 ]
Rundensteiner, EA [1 ]
机构
[1] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
关键词
dimension ordering; dimension spacing; dimension filtering; multidimensional visualization; high dimensional datasets;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large numbers of dimensions not only cause clutter in multidimensional visualizations, but also make it difficult for users to navigate the data space. Effective dimension management, such as dimension ordering, spacing and filtering, is critical for visual exploration of such datasets. Dimension ordering and spacing explicitly reveal dimension relationships in arrangement-sensitive multidimensional visualization techniques, such as Parallel Coordinates, Star Glyphs, and Pixel-Oriented techniques. They facilitate the visual discovery of patterns within the data. Dimension filtering hides some of the dimensions to reduce clutter while preserving the major information of the dataset. In this paper, we propose an interactive hierarchical dimension ordering, spacing and filtering approach, called DOSFA. DOSFA is based on dimension hierarchies derived from similarities among dimensions. It is a scalable multi-resolution approach making dimensional management a tractable task. On the one hand, it automatically generates default settings for dimension ordering, spacing and filtering. On the other hand, it allows users to efficiently control all aspects of this dimension management process via visual interaction tools for dimension hierarchy manipulation. A case study visualizing a dataset containing over 200 dimensions reveals how our proposed approach greatly improves the effectiveness of high dimensional visualization techniques.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [21] ICEAGE: Interactive clustering and exploration of large and high-dimensional geodata
    Guo, DS
    Peuquet, DJ
    Gahegan, M
    [J]. GEOINFORMATICA, 2003, 7 (03) : 229 - 253
  • [22] An Ant Colony Optimization Based Dimension Reduction Method for High-Dimensional Datasets
    Ying Li
    Gang Wang
    Huiling Chen
    Lian Shi
    Lei Qin
    [J]. Journal of Bionic Engineering, 2013, 10 : 231 - 241
  • [23] Novel Agglomerative Partitioning Framework for Dimension Reduction of High-Dimensional Genomic Datasets
    Millstein, Joshua
    Thomas, Duncan
    Yu, Yang
    Cozen, Wendy
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 653 - 653
  • [24] A Projection Pursuit framework for supervised dimension reduction of high dimensional small sample datasets
    Espezua, Soledad
    Villanueva, Edwin
    Maciel, Carlos D.
    Carvalho, Andre
    [J]. NEUROCOMPUTING, 2015, 149 : 767 - 776
  • [25] An Ant Colony Optimization Based Dimension Reduction Method for High-Dimensional Datasets
    Li, Ying
    Wang, Gang
    Chen, Huiling
    Shi, Lian
    Qin, Lei
    [J]. JOURNAL OF BIONIC ENGINEERING, 2013, 10 (02) : 231 - 241
  • [26] A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise
    He, Yan-Lin
    Geng, Zhi-Qiang
    Xu, Yuan
    Zhu, Qun-Xiong
    [J]. NEUROCOMPUTING, 2014, 128 : 407 - 414
  • [27] Dimension Reconstruction for Visual Exploration of Subspace Clusters in High-dimensional Data
    Zhou, Fangfang
    Li, Juncai
    Huang, Wei
    Zhao, Ying
    Yuan, Xiaoru
    Liang, Xing
    Shi, Yang
    [J]. 2016 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2016, : 128 - 135
  • [28] Interactive Exploration of Multi-Dimensional and Hierarchical Information Spaces with Real-Time Preference Elicitation
    Tzitzikas, Yannis
    Papadakos, Panagiotis
    [J]. FUNDAMENTA INFORMATICAE, 2013, 122 (04) : 357 - 399
  • [29] Targeted projection pursuit for interactive exploration of high-dimensional data sets
    Faith, Joe
    [J]. 11TH INTERNATIONAL CONFERENCE INFORMATION VISUALIZATION, 2007, : 286 - 292
  • [30] Focused multidimensional scaling: interactive visualization for exploration of high-dimensional data
    Urpa, Lea M.
    Anders, Simon
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)