Discontinuous Galerkin finite element methods for one-dimensional Rosenau equation

被引:0
|
作者
Danumjaya, P. [1 ]
Balaje, K. [2 ]
机构
[1] BITS Pilani KK Birla, Dept Math, Goa Campus, Sancoale 403726, Goa, India
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2300, Australia
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 04期
关键词
Rosenau equation; Discontinuous Galerkin finite element methods; Semidiscrete method; Completely discrete method; Optimal error estimates; Decay estimates; CONSERVATIVE DIFFERENCE-SCHEMES; MODEL;
D O I
10.1007/s41478-022-00406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, discontinuous Galerkin finite element methods are applied to one-dimensional Rosenau equation. Theoretical results including consistency, a priori bounds and optimal error estimates are established for both semidiscrete and fully discrete schemes. Numerical experiments are performed to validate the theoretical results. The decay estimates are verified numerically for the Rosenau equation.
引用
收藏
页码:1407 / 1426
页数:20
相关论文
共 50 条