Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction

被引:12
|
作者
Zhong, Kai [1 ,2 ]
Yu, Chun-Chieh [2 ]
Dodia, Mayank [2 ]
Bonn, Mischa [2 ]
Nagata, Yuki [2 ]
Ohto, Tatsuhiko [3 ]
机构
[1] Univ Sci & Technol China, Sch Chem & Mat Sci, CAS Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci Microscale,Collaborat Inn, Hefei 230026, Anhui, Peoples R China
[2] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[3] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
关键词
GENERALIZED GRADIENT APPROXIMATION; HYDROGEN-BOND DYNAMICS; THERMOCHEMISTRY; SPECTROSCOPY; ABSORPTION; PARAMETERS; MECHANICS; ENERGIES; KINETICS; SPECTRA;
D O I
10.1039/c9cp06335h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The frequencies and spectral lineshapes of the stretch and bending modes of water provide invaluable information on the microscopic structures of water in aqueous solutions and at the water/solid interfaces. Density functional theory molecular dynamics (DFT-MD) simulation has been used not only for predicting the properties of water but also for interpreting the vibrational spectra of water. Since the accuracy of the DFT-MD simulations relies on the choice of the exchange-correlation functionals and dispersion correction schemes employed, the predicted vibrational spectra at different levels of DFT theory differ significantly, prohibiting precise comparison of simulated spectra with experimental data. Here, we simulate the vibrational density of states for liquid heavy water based on various DFT-MD trajectories. We find that DFT-MD simulations tend to predict excessive inhomogeneous broadening for the stretch mode of water. Furthermore, we develop a frequency correction scheme for the stretch and bending modes of liquid water, which substantially improves the prediction of the vibrational spectra.
引用
收藏
页码:12785 / 12793
页数:9
相关论文
共 50 条
  • [31] Long-range van der Waals interactions in density functional theory
    Alonso, J. A.
    Mananes, A.
    THEORETICAL CHEMISTRY ACCOUNTS, 2007, 117 (04) : 467 - 472
  • [32] Van der Waals forces in the local-orbital density functional theory
    Basanta, MA
    Dappe, YJ
    Ortega, J
    Flores, F
    EUROPHYSICS LETTERS, 2005, 70 (03): : 355 - 361
  • [33] Long-Range van der Waals Interactions in Density Functional Theory
    J. A. Alonso
    A. Mañanes
    Theoretical Chemistry Accounts, 2007, 117 : 467 - 472
  • [34] van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes
    Kannemann, Felix O.
    Becke, Axel D.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) : 1081 - 1088
  • [35] DENSITY-FUNCTIONAL THEORY INCLUDING VAN-DER-WAALS FORCES
    LUNDQVIST, BI
    ANDERSSON, Y
    SHAO, H
    CHAN, S
    LANGRETH, DC
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1995, 56 (04) : 247 - 255
  • [36] A density functional theory study of van der Waals interaction in carbon nanotubes
    Wang, Houng-Wei
    Hayashi, Michitoshi
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2023, 70 (03) : 759 - 769
  • [37] van der Waals Interactions in Density Functional Theory Using Wannier Functions
    Silvestrelli, Pier Luigi
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (17): : 5224 - 5234
  • [38] Simulations of H-He mixtures using the van der Waals density functional
    Schoettler, Manuel
    Redmer, Ronald
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (04)
  • [39] Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations
    Ding, Hong
    Ray, Keith G.
    Ozolins, Vidvuds
    Asta, Mark
    PHYSICAL REVIEW B, 2012, 85 (01)
  • [40] Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions
    Miceli, Giacomo
    de Gironcoli, Stefano
    Pasquarello, Alfredo
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (03):