Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction

被引:12
|
作者
Zhong, Kai [1 ,2 ]
Yu, Chun-Chieh [2 ]
Dodia, Mayank [2 ]
Bonn, Mischa [2 ]
Nagata, Yuki [2 ]
Ohto, Tatsuhiko [3 ]
机构
[1] Univ Sci & Technol China, Sch Chem & Mat Sci, CAS Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci Microscale,Collaborat Inn, Hefei 230026, Anhui, Peoples R China
[2] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[3] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
关键词
GENERALIZED GRADIENT APPROXIMATION; HYDROGEN-BOND DYNAMICS; THERMOCHEMISTRY; SPECTROSCOPY; ABSORPTION; PARAMETERS; MECHANICS; ENERGIES; KINETICS; SPECTRA;
D O I
10.1039/c9cp06335h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The frequencies and spectral lineshapes of the stretch and bending modes of water provide invaluable information on the microscopic structures of water in aqueous solutions and at the water/solid interfaces. Density functional theory molecular dynamics (DFT-MD) simulation has been used not only for predicting the properties of water but also for interpreting the vibrational spectra of water. Since the accuracy of the DFT-MD simulations relies on the choice of the exchange-correlation functionals and dispersion correction schemes employed, the predicted vibrational spectra at different levels of DFT theory differ significantly, prohibiting precise comparison of simulated spectra with experimental data. Here, we simulate the vibrational density of states for liquid heavy water based on various DFT-MD trajectories. We find that DFT-MD simulations tend to predict excessive inhomogeneous broadening for the stretch mode of water. Furthermore, we develop a frequency correction scheme for the stretch and bending modes of liquid water, which substantially improves the prediction of the vibrational spectra.
引用
收藏
页码:12785 / 12793
页数:9
相关论文
共 50 条
  • [21] Generalized van der Waals density functional theory for nonuniform polymers
    Patra, CN
    Yethiraj, A
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (03): : 1579 - 1584
  • [22] Density Functional Theory including Van der Waals energies.
    Kohn, W
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 156 - COMP
  • [23] Nonempirical density-functional theory for van der Waals interactions
    Becke, Axel D.
    Arabi, Alya A.
    Kannemann, Felix O.
    CANADIAN JOURNAL OF CHEMISTRY, 2010, 88 (11) : 1057 - 1062
  • [24] Water monomer interaction with gold nanoclusters from van der Waals density functional theory
    Xue, Yongqiang
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (02):
  • [25] Van der Waals density functional calculations of binding in molecular crystals
    Berland, Kristian
    Borck, Oyvind
    Hyldgaard, Per
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) : 1800 - 1804
  • [26] Adsorption of water on graphene: A van der Waals density functional study
    Hamada, Ikutaro
    PHYSICAL REVIEW B, 2012, 86 (19)
  • [27] VAN DER WAALS EQUATION OF STATE REVISED: GAS MOLECULAR VOLUME CORRECTION
    Dai, Wei
    Hu, Shi-De
    MODERN PHYSICS LETTERS B, 2011, 25 (26): : 2053 - 2059
  • [28] Density, structure, and dynamics of water: The effect of van der Waals interactions
    Wang, Jue
    Roman-Perez, G.
    Soler, Jose M.
    Artacho, Emilio
    Fernandez-Serra, M. -V.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (02):
  • [29] Time-dependent density functional theory molecular dynamics simulations of liquid water radiolysis
    Tavernelli, Ivano
    Gaigeot, Marie-Pierre
    Vuilleumier, Rodolphe
    Stia, Carlos
    du Penhoat, Marie-Anne Herve
    Politis, Marie-Francoise
    CHEMPHYSCHEM, 2008, 9 (14) : 2099 - 2103
  • [30] Toward the description of van der Waals interactions within density functional theory
    Lein, M
    Dobson, JF
    Gross, EKU
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1999, 20 (01) : 12 - 22