Regularised Estimators for Fractional Gaussian Noise

被引:3
|
作者
Vivero, Oskar [1 ]
Heath, William P. [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester M60 1QD, Lancs, England
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; BROWNIAN-MOTION; PARAMETERS; RANGE;
D O I
10.1109/CDC.2010.5717764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There is significant interest in long-range dependent processes since they occur in a wide range of phenomena across different areas of study. Based on the available models capable of describing long-range dependence, various parameter estimation methods have been developed. This paper revisits the maximum likelihood estimator and its computationally efficient approximations: the Whittle Estimator and the Circulant Embedding estimator. Based on the properties of these, a regularisation method for datasets largely contaminated with errors is introduced.
引用
收藏
页码:5025 / 5030
页数:6
相关论文
共 50 条
  • [41] On the Telecommunication Traffic Forecasting in a Fractional Gaussian Noise Model
    Gorev, Vyacheslav
    Gusev, Alexander
    Korniienko, Valerii
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGIES & SYSTEMS OF INFORMATION SECURITY (INTELITSIS 2020), VOL 1, 2020, 2623 : 164 - 173
  • [42] The Hurst phenomenon and fractional Gaussian noise made easy
    Koutsoyiannis, D
    [J]. HYDROLOGICAL SCIENCES JOURNAL, 2002, 47 (04) : 573 - 595
  • [43] Solvability of Parabolic Anderson Equation with Fractional Gaussian Noise
    Zhen-Qing Chen
    Yaozhong Hu
    [J]. Communications in Mathematics and Statistics, 2023, 11 : 563 - 582
  • [44] A filter for a state space model with fractional Gaussian noise
    Elliott, Robert J.
    Deng, Jia
    [J]. AUTOMATICA, 2010, 46 (10) : 1689 - 1695
  • [45] Using fractional Gaussian noise models in orbit determination
    Chow, WC
    Schumacher, PW
    [J]. SPACEFLIGHT MECHANICS 2002, VOL 112, PTS I AND II, 2002, 112 : 1101 - 1122
  • [46] On the Behavior of MEMD in Presence of Multivariate Fractional Gaussian Noise
    Komaty, Ali
    Boudraa, Abdel-Ouahab
    Flandrin, Patrick
    Amblard, Pierre-Olivier
    Astolfi, Jacques-Andre
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2676 - 2688
  • [47] Transport in periodic potentials induced by fractional Gaussian noise
    Ai, Bao-quan
    He, Ya-feng
    Zhong, Wei-rong
    [J]. PHYSICAL REVIEW E, 2010, 82 (06):
  • [48] Using fractional Gaussian noise models in orbit determination
    Chow, WC
    Schumacher, PW
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (04) : 593 - 607
  • [49] Solvability of Parabolic Anderson Equation with Fractional Gaussian Noise
    Chen, Zhen-Qing
    Hu, Yaozhong
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (03) : 563 - 582
  • [50] On bandlimitedness and lag-limitedness of fractional Gaussian noise
    Li, Ming
    Zhao, Wei
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 1955 - 1961