Regularised Estimators for Fractional Gaussian Noise

被引:3
|
作者
Vivero, Oskar [1 ]
Heath, William P. [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester M60 1QD, Lancs, England
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; BROWNIAN-MOTION; PARAMETERS; RANGE;
D O I
10.1109/CDC.2010.5717764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There is significant interest in long-range dependent processes since they occur in a wide range of phenomena across different areas of study. Based on the available models capable of describing long-range dependence, various parameter estimation methods have been developed. This paper revisits the maximum likelihood estimator and its computationally efficient approximations: the Whittle Estimator and the Circulant Embedding estimator. Based on the properties of these, a regularisation method for datasets largely contaminated with errors is introduced.
引用
收藏
页码:5025 / 5030
页数:6
相关论文
共 50 条
  • [21] Fractional Gaussian Noise and Network Traffic Modeling
    Li, Ming
    [J]. PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 34 - +
  • [22] An EMD based simulation of fractional Gaussian noise
    Shan, Peiwei
    Li, Ming
    [J]. WSEAS: INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS, 2008, : 72 - 76
  • [23] A hybrid detrending method for fractional Gaussian noise
    Sun, Jingliang
    Sheng, Huanye
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (17) : 2995 - 3001
  • [24] Synthesis of accurate fractional Gaussian noise by filtering
    Ostry, DI
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1609 - 1623
  • [25] A GEOMETRICAL STUDY OF THE BIVARIATE FRACTIONAL GAUSSIAN NOISE
    Lefevre, Jeanne
    Le Bihan, Nicolas
    Amblard, Pierre-Olivier
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 144 - 148
  • [27] Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy
    Zunino, L.
    Perez, D. G.
    Kowalski, A.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (24) : 6057 - 6068
  • [28] Robust estimators for frequency offset of OFDM in non-Gaussian noise
    Chong, Dahae
    Lee, Youngpo
    Song, Iickho
    Yoon, Seokho
    [J]. IEICE ELECTRONICS EXPRESS, 2011, 8 (17): : 1412 - 1418
  • [29] Linear systems with fractional Brownian motion and Gaussian noise
    Grigoriu, Mircea
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (03) : 276 - 284
  • [30] Deconvolution model with fractional Gaussian noise: A minimax study
    Benhaddou, Rida
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 117 : 201 - 208