Neurodynamic programming and zero-sum games for constrained control systems

被引:149
|
作者
Abu-Khalaf, Murad [1 ]
Lewis, Frank L. [2 ]
Huang, Jie [3 ]
机构
[1] MathWorks Inc, Control & Estimat Grp, Natick, MA 01760 USA
[2] Univ Texas Arlington, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
[3] Chinese Univ Hong Kong, Dept Automat & Comp Aided Engn, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 07期
基金
美国国家科学基金会;
关键词
actuator saturation; H(infinity) control; policy iterations; zero-sum games;
D O I
10.1109/TNN.2008.2000204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L(2)-gain optimal control, suboptimal H(infinity) control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L(2)-gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
引用
收藏
页码:1243 / 1252
页数:10
相关论文
共 50 条
  • [1] Zero-Sum Games and Linear Programming Duality
    von Stengel, Bernhard
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1091 - 1108
  • [2] Zero-Sum Games
    Neumann-Grutzeck, Christine
    INTERNIST, 2021, 62 (06): : 639 - 639
  • [3] Zero-sum games
    不详
    PHYSICS WORLD, 1999, 12 (04) : 3 - 3
  • [4] Zero-sum stochastic games with stopping and control
    Ghosh, Mrinal K.
    Rao, K. S. Mallikarjuna
    OPERATIONS RESEARCH LETTERS, 2007, 35 (06) : 799 - 804
  • [5] Zero-sum constrained stochastic games with independent state processes
    Altman, E
    Avrachenkov, K
    Marquez, R
    Miller, G
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2005, 62 (03) : 375 - 386
  • [6] Zero-sum constrained stochastic games with independent state processes
    Eitan Altman
    Konstantin Avrachenkov
    Richard Marquez
    Gregory Miller
    Mathematical Methods of Operations Research, 2005, 62 : 375 - 386
  • [7] Regret Minimization in Behaviorally-Constrained Zero-Sum Games
    Farina, Gabriele
    Kroer, Christian
    Sandholm, Tuomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [8] Vector linear programming in zero-sum multicriteria matrix games
    Fernandez, FR
    Puerto, J
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (01) : 115 - 127
  • [9] ZERO-SUM STOPPER VERSUS SINGULAR-CONTROLLER GAMES WITH CONSTRAINED CONTROL DIRECTIONS
    Bovo, Andrea
    De Angelis, Tiziano
    Palczewski, Jan
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (04) : 2203 - 2228
  • [10] Linear Programming Modeling for Solving Fuzzy Zero-Sum Games
    Briao, Stephanie Loi
    Dimuro, Gracaliz Pereira
    Santos Machado, Catia Maria
    2013 2ND WORKSHOP-SCHOOL ON THEORETICAL COMPUTER SCIENCE (WEIT), 2013, : 84 - 91