Zero-Sum Games and Linear Programming Duality

被引:0
|
作者
von Stengel, Bernhard [1 ]
机构
[1] London Sch Econ, Dept Math, London WC2A 2AE, England
关键词
zero-sum game; minimax theorem; linear programming duality; lemma of Farkas;
D O I
10.1287/moor.2022.0149
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The minimax theorem for zero-sum games is easily proved from the strong duality theorem of linear programming. For the converse direction, the standard proof by Dantzig is known to be incomplete. We explain and combine classical theorems about solving linear equations with nonnegative variables to give a correct alternative proof more directly than Adler. We also extend Dantzig's game so that any max-min strategy gives either an optimal LP solution or shows that none exists.
引用
收藏
页码:1091 / 1108
页数:19
相关论文
共 50 条
  • [1] Vector linear programming in zero-sum multicriteria matrix games
    Fernandez, FR
    Puerto, J
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (01) : 115 - 127
  • [2] Linear Programming Modeling for Solving Fuzzy Zero-Sum Games
    Briao, Stephanie Loi
    Dimuro, Gracaliz Pereira
    Santos Machado, Catia Maria
    2013 2ND WORKSHOP-SCHOOL ON THEORETICAL COMPUTER SCIENCE (WEIT), 2013, : 84 - 91
  • [3] The equivalence of linear programs and zero-sum games
    Adler, Ilan
    INTERNATIONAL JOURNAL OF GAME THEORY, 2013, 42 (01) : 165 - 177
  • [4] Output feedback adaptive dynamic programming for linear differential zero-sum games
    Rizvi, Syed Ali Asad
    Lin, Zongli
    Brown, Charles L.
    AUTOMATICA, 2020, 122
  • [5] The equivalence of linear programs and zero-sum games
    Ilan Adler
    International Journal of Game Theory, 2013, 42 : 165 - 177
  • [6] Duality in Linear Programming with Fuzzy Parameters and Two-Person Zero-Sum Constrained Matrix Games with Fuzzy Payoffs
    Gao, Zuofeng
    Han, Chunyan
    Zhang, Hua
    Zhang, Suting
    Bai, Hongxin
    Yu, Yongbo
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1192 - 1195
  • [7] The duality gap for two-team zero-sum games
    Schulman, Leonard J.
    Vazirani, Umesh V.
    GAMES AND ECONOMIC BEHAVIOR, 2019, 115 : 336 - 345
  • [8] Zero-Sum Games
    Neumann-Grutzeck, Christine
    INTERNIST, 2021, 62 (06): : 639 - 639
  • [9] Zero-sum games
    不详
    PHYSICS WORLD, 1999, 12 (04) : 3 - 3
  • [10] Two person zero-sum games as an application of linear programming using the excel solver
    Fox, William P.
    Computers in Education Journal, 2015, 6 (03): : 37 - 49