Neurodynamic programming and zero-sum games for constrained control systems

被引:149
|
作者
Abu-Khalaf, Murad [1 ]
Lewis, Frank L. [2 ]
Huang, Jie [3 ]
机构
[1] MathWorks Inc, Control & Estimat Grp, Natick, MA 01760 USA
[2] Univ Texas Arlington, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
[3] Chinese Univ Hong Kong, Dept Automat & Comp Aided Engn, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 07期
基金
美国国家科学基金会;
关键词
actuator saturation; H(infinity) control; policy iterations; zero-sum games;
D O I
10.1109/TNN.2008.2000204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L(2)-gain optimal control, suboptimal H(infinity) control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L(2)-gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
引用
收藏
页码:1243 / 1252
页数:10
相关论文
共 50 条
  • [41] Convexity in zero-sum differential games
    Goebel, R
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 3964 - 3969
  • [42] Zero-sum Markov games and worst-case optimal control of queueing systems
    Altman, E
    Hordijk, A
    QUEUEING SYSTEMS, 1995, 21 (3-4) : 415 - 447
  • [43] Zero-sum state constrained differential games: existence of value for Bolza problem
    Bettiol, Piernicola
    Cardaliaguet, Pierre
    Quincampoix, Marc
    INTERNATIONAL JOURNAL OF GAME THEORY, 2006, 34 (04) : 495 - 527
  • [44] Zero-sum state constrained differential games: existence of value for Bolza problem
    Piernicola Bettiol
    Pierre Cardaliaguet
    Marc Quincampoix
    International Journal of Game Theory, 2006, 34 : 495 - 527
  • [45] Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games
    Perolat, Julien
    Scherrer, Bruno
    Piot, Bilal
    Pietquin, Olivier
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1321 - 1329
  • [46] Output feedback adaptive dynamic programming for linear differential zero-sum games
    Rizvi, Syed Ali Asad
    Lin, Zongli
    Brown, Charles L.
    AUTOMATICA, 2020, 122
  • [47] Discrete-time Optimal Zero-sum Games for Nonlinear Systems via Adaptive Dynamic Programming
    Wei, Qinglai
    Song, Ruizhuo
    Xu, Yancai
    Liu, Derong
    Lin, Qiao
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 357 - 364
  • [48] Min-max adaptive dynamic programming for zero-sum differential games
    Sarbaz, Mohammad
    Sun, Wei
    INTERNATIONAL JOURNAL OF CONTROL, 2024,
  • [49] Zero-sum Differential Games Guidance Law Accounting for Impact-Angle-Constrained Using Adaptive Dynamic Programming
    Xue Zhang
    Qi Wang
    Journal of Intelligent & Robotic Systems, 111 (1)
  • [50] Duality in Linear Programming with Fuzzy Parameters and Two-Person Zero-Sum Constrained Matrix Games with Fuzzy Payoffs
    Gao, Zuofeng
    Han, Chunyan
    Zhang, Hua
    Zhang, Suting
    Bai, Hongxin
    Yu, Yongbo
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1192 - 1195