Impact of Automated Action Labeling in Classification of Human Actions in RGB-D Videos

被引:0
|
作者
Jardim, David [1 ,2 ,3 ,4 ]
Nunes, Luis [2 ,3 ,4 ]
Dias, Miguel [1 ,2 ,4 ]
机构
[1] Microsoft Language Dev Ctr, Lisbon, Portugal
[2] ISCTE IUL, Lisbon, Portugal
[3] Inst Telecomunicacoes, Lisbon, Portugal
[4] ISTAR IUL, Lisbon, Portugal
关键词
D O I
10.3233/978-1-61499-672-9-1632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For many applications it is important to be able to detect what a human is currently doing. This ability is useful for applications such as surveillance, human computer interfaces, games and healthcare. In order to recognize a human action, the typical approach is to use manually labeled data to perform supervised training. This paper aims to compare the performance of several supervised classifiers trained with manually labeled data versus the same classifiers trained with data automatically labeled. In this paper we propose a framework capable of recognizing human actions using supervised classifiers trained with automatically labeled data in RGB-D videos.
引用
收藏
页码:1632 / 1633
页数:2
相关论文
共 50 条
  • [31] Joint Object Affordance Reasoning and Segmentation in RGB-D Videos
    Thermos, Spyridon
    Potamianos, Gerasimos
    Daras, Petros
    [J]. IEEE ACCESS, 2021, 9 : 89699 - 89713
  • [32] Reconstructing Articulated Rigged Models from RGB-D Videos
    Tzionas, Dimitrios
    Gall, Juergen
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 620 - 633
  • [33] Semantic segmentation with Recurrent Neural Networks on RGB-D videos
    Gao, Chuan
    Wang, Weihong
    Chen, Mingxi
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1203 - 1207
  • [34] A computational framework for attentional object discovery in RGB-D videos
    Garcia, German Martin
    Pavel, Mircea
    Frintrop, Simone
    [J]. COGNITIVE PROCESSING, 2017, 18 (02) : 169 - 182
  • [35] A computational framework for attentional object discovery in RGB-D videos
    Germán Martín García
    Mircea Pavel
    Simone Frintrop
    [J]. Cognitive Processing, 2017, 18 : 169 - 182
  • [36] ReadingAct RGB-D action dataset and human action recognition from local features
    Chen, Lulu
    Wei, Hong
    Ferryman, James
    [J]. PATTERN RECOGNITION LETTERS, 2014, 50 : 159 - 169
  • [37] Sparse Composition of Body Poses and Atomic Actions for Human Activity Recognition in RGB-D Videos (vol 59, pg 63, 2017)
    Lillo, Ivan
    Niebles, Juan Carlos
    Soto, Alvaro
    [J]. IMAGE AND VISION COMPUTING, 2017, 66 : 48 - 48
  • [38] Structured Images for RGB-D Action Recognition
    Wang, Pichao
    Wang, Shuang
    Gao, Zhimin
    Hou, Yonghong
    Li, Wanqing
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1005 - 1014
  • [39] Joint Human Detection and Head Pose Estimation via Multistream Networks for RGB-D Videos
    Zhang, Guyue
    Liu, Jun
    Li, Hengduo
    Chen, Yan Qiu
    Davis, Larry S.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (11) : 1666 - 1670
  • [40] Contextual object category recognition for RGB-D scene labeling
    Ali, Haider
    Shafait, Faisal
    Giannakidou, Eirini
    Vakali, Athena
    Figueroa, Nadia
    Varvadoukas, Theodoros
    Mavridis, Nikolaos
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2014, 62 (02) : 241 - 256