Impact of Automated Action Labeling in Classification of Human Actions in RGB-D Videos

被引:0
|
作者
Jardim, David [1 ,2 ,3 ,4 ]
Nunes, Luis [2 ,3 ,4 ]
Dias, Miguel [1 ,2 ,4 ]
机构
[1] Microsoft Language Dev Ctr, Lisbon, Portugal
[2] ISCTE IUL, Lisbon, Portugal
[3] Inst Telecomunicacoes, Lisbon, Portugal
[4] ISTAR IUL, Lisbon, Portugal
关键词
D O I
10.3233/978-1-61499-672-9-1632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For many applications it is important to be able to detect what a human is currently doing. This ability is useful for applications such as surveillance, human computer interfaces, games and healthcare. In order to recognize a human action, the typical approach is to use manually labeled data to perform supervised training. This paper aims to compare the performance of several supervised classifiers trained with manually labeled data versus the same classifiers trained with data automatically labeled. In this paper we propose a framework capable of recognizing human actions using supervised classifiers trained with automatically labeled data in RGB-D videos.
引用
收藏
页码:1632 / 1633
页数:2
相关论文
共 50 条
  • [21] Human Activity Recognition from Automatically Labeled Data in RGB-D Videos
    Jardim, David
    Nunes, Luis
    Dias, Miguel
    [J]. 2016 8TH COMPUTER SCIENCE AND ELECTRONIC ENGINEERING CONFERENCE (CEEC), 2016, : 89 - 94
  • [22] Fall Detection in RGB-D Videos for Elderly Care
    Yun, Yixiao
    Innocenti, Christopher
    Nero, Gustav
    Linden, Henrik
    Gu, Irene Yu-Hua
    [J]. 2015 17TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATION & SERVICES (HEALTHCOM), 2015, : 422 - 427
  • [23] Generative adversarial networks for generating RGB-D videos
    Nakahira, Yuki
    Kawamoto, Kazuhiko
    [J]. 2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 1276 - 1281
  • [24] An RGB-D Descriptor for Object Classification
    Arican, Erkut
    Aydin, Tarkan
    [J]. ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2022, 25 (3-4): : 338 - 349
  • [25] Single RGB-D Fitting: Total Human Modeling with an RGB-D Shot
    Fang, Xianyong
    Yang, Jikui
    Rao, Jie
    Wang, Linbo
    Deng, Zhigang
    [J]. 25TH ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY (VRST 2019), 2019,
  • [26] Visual Recognition in RGB Images and Videos by Learning from RGB-D Data
    Li, Wen
    Chen, Lin
    Xu, Dong
    Van Gool, Luc
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (08) : 2030 - 2036
  • [27] RGB-D sensing based human action and interaction analysis: A survey
    Liu, Bangli
    Cai, Haibin
    Ju, Zhaojie
    Liu, Honghai
    [J]. PATTERN RECOGNITION, 2019, 94 : 1 - 12
  • [28] Human Action Recognition with Contextual Constraints using a RGB-D Sensor
    Gu, Ye
    Sheng, Weihua
    Ou, Yongsheng
    Liu, Meiqin
    Zhang, Senlin
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 674 - 679
  • [29] Estimating Spatial Layout of Rooms from RGB-D Videos
    Wang, Anran
    Lu, Jiwen
    Cai, Jianfei
    Wang, Gang
    Cham, Tat-Jen
    [J]. 2014 IEEE 16TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2014,
  • [30] Joint Object Affordance Reasoning and Segmentation in RGB-D Videos
    Thermos, Spyridon
    Potamianos, Gerasimos
    Daras, Petros
    [J]. IEEE ACCESS, 2021, 9 : 89699 - 89713