Sparse unmixing analysis for hyperspectral imagery of space objects

被引:0
|
作者
Shi, Zhenwei [1 ]
Zhai, Xinya [1 ]
Borjigen, Durengjan [2 ]
Jiang, Zhiguo [1 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse unmixing; space object; endmember; fractional abundance; MATRIX FACTORIZATION; ENDMEMBER EXTRACTION; COMPONENT ANALYSIS; ALGORITHM;
D O I
10.1117/12.900271
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spectral unmixing analysis for hyperspectral images aims at estimating the pure constituent materials (called endmembers) in each mixed pixel and their corresponding fractional abundances. In this article, we use a semi-supervised approach based on a large spectral database. It aims at finding the optimal subset of spectral signatures in a large spectral library that can best model each mixed pixel in the scene and computes the fractional abundance which every spectral signal corresponds to. We use l(2)-l(1) sparse regression technical which has the advantage of being convex. Then we adopt split Bregman iteration algorithm to solve the problem. It converges quickly and the value of regularization parameter could remain constant during iterations. Our experiments use simulated pure and mixed pixel hyperspectral images of Hubble Space Telescope. The endmembers selected in the solution are the real materials' spectrums in the simulated data and the approximations of their corresponding fractional abundances are close to the true situation. The results indicate the algorithm works well.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] SPARSE AND LOW RANK HYPERSPECTRAL UNMIXING
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 229 - 232
  • [42] Deblurring and Sparse Unmixing for Hyperspectral Images
    Zhao, Xi-Le
    Wang, Fan
    Huang, Ting-Zhu
    Ng, Michael K.
    Plemmons, Robert J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4045 - 4058
  • [43] ROBUST UNMIXING ALGORITHMS FOR HYPERSPECTRAL IMAGERY
    Halimi, Abderrahim
    Altmann, Yoann
    Buller, Gerald S.
    McLaughlin, Steve
    Oxford, William
    Clarke, Damien
    Piper, Jonathan
    [J]. 2016 SENSOR SIGNAL PROCESSING FOR DEFENCE (SSPD), 2016, : 94 - 98
  • [44] Blind unmixing based on independent component analysis for hyperspectral imagery
    Xia Wei
    Wang Bin
    Zhang Li-Ming
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2011, 30 (02) : 131 - +
  • [45] RECENT DEVELOPMENTS IN SPARSE HYPERSPECTRAL UNMIXING
    Iordache, Marian-Daniel
    Plaza, Antonio
    Bioucas-Dias, Jose
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1281 - 1284
  • [46] ROBUST SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Ma, Yang
    Li, Chang
    Ma, Jiayi
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6193 - 6196
  • [47] SPARSE SUPERPIXEL UNMIXING FOR EXPLORATORY ANALYSIS OF CRISM HYPERSPECTRAL IMAGES
    Thompson, David R.
    Castano, Rebecca
    Gilmore, Martha S.
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 303 - +
  • [48] PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Rodriguez Alves, Jose M.
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Silva, Vitor
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1446 - 1449
  • [49] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [50] Reweighted Sparse Regression for Hyperspectral Unmixing
    Zheng, Cheng Yong
    Li, Hong
    Wang, Qiong
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 479 - 488