Deblurring and Sparse Unmixing for Hyperspectral Images

被引:141
|
作者
Zhao, Xi-Le [1 ]
Wang, Fan [2 ]
Huang, Ting-Zhu [1 ]
Ng, Michael K. [3 ]
Plemmons, Robert J. [4 ,5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
[2] Lanzhou Univ, Dept Math & Stat, Lanzhou 730000, Peoples R China
[3] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
[4] Wake Forest Univ, Dept Comp Sci, Winston Salem, NC 27106 USA
[5] Wake Forest Univ, Dept Math, Winston Salem, NC 27106 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 07期
基金
中国国家自然科学基金;
关键词
Alternating direction methods; deblurring; hyperspectral imaging; linear spectral unmixing; total variation (TV); ALGORITHM; SEGMENTATION; MODELS;
D O I
10.1109/TGRS.2012.2227764
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.
引用
收藏
页码:4045 / 4058
页数:14
相关论文
共 50 条
  • [1] DEBLURRING AND SPARSE UNMIXING OF HYPERSPECTRAL IMAGES USING MULTIPLE POINT SPREAD FUNCTIONS
    Berisha, Sebastian
    Nagy, James G.
    Plemmons, Robert J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : S389 - S406
  • [2] SPARSE UNMIXING BASED DENOISING FOR HYPERSPECTRAL IMAGES
    Erturk, Alp
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7006 - 7009
  • [3] Centralized Collaborative Sparse Unmixing for Hyperspectral Images
    Wang, Rui
    Li, Heng-Chao
    Liao, Wenzhi
    Huang, Xin
    Philips, Wilfried
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (05) : 1949 - 1962
  • [4] Manifold regularization for sparse unmixing of hyperspectral images
    Liu, Junmin
    Zhang, Chunxia
    Zhang, Jiangshe
    Li, Huirong
    Gao, Yuelin
    SPRINGERPLUS, 2016, 5
  • [5] Joint Local Abundance Sparse Unmixing for Hyperspectral Images
    Rizkinia, Mia
    Okuda, Masahiro
    REMOTE SENSING, 2017, 9 (12)
  • [6] Spectral Variability Augmented Sparse Unmixing of Hyperspectral Images
    Zhang, Ge
    Mei, Shaohui
    Xie, Bobo
    Ma, Mingyang
    Zhang, Yifan
    Feng, Yan
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Framelet-Based Sparse Unmixing of Hyperspectral Images
    Zhang, Guixu
    Xu, Yingying
    Fang, Faming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (04) : 1516 - 1529
  • [8] Sparse unmixing via WM algorithm for hyperspectral images
    Marques, Ion
    Grana, Manuel
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [9] Spectral unmixing of hyperspectral images based on block sparse structure
    Azarang, Seyed Hossein Mosavi
    Rajabi, Roozbeh
    Zayyani, Hadi
    Zehtabian, Amin
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (01) : 16510
  • [10] SUPERRESOLUTION OF HYPERSPECTRAL IMAGES USING SPECTRAL UNMIXING AND SPARSE REGULARIZATION
    Nezhad, Zahra Hashemi
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7216 - 7219