An adjusted evolutionary algorithm for the optimization of fuzzy controllers

被引:0
|
作者
Wagner, S [1 ]
Kochs, HD [1 ]
机构
[1] Univ Duisburg Gesamthsch, Dept Informat Proc, Fac Mech Engn, D-4100 Duisburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an evolutionary method for automatic generation and optimization of fuzzy controllers (FC). The typical genetic operations mutation and recombination are designed with special respect to the structural characteristics of an FC and permit an effective generation of solutions. The proposed method goes without global parameters for step size adaptation by the use of an individual adaptive mutation mechanism selection and achieves a greater independence of the individuals of a population. The resulting broad dispersion of solutions in the search space leads to a high efficiency in finding good solutions. For the shown control examples the strategy generates controllers out of randomly occupied individuals which show excellent performance. There is high reliability in finding good solutions and usually very few parameters need to be tuned manually.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 50 条
  • [21] Evolving fuzzy controllers through evolutionary programming
    Makaitis, D
    [J]. NAFIPS'2003: 22ND INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS PROCEEDINGS, 2003, : 50 - 54
  • [22] Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm
    Lagunes, Marylu L.
    Castillo, Oscar
    Soria, Jose
    Garcia, Mario
    Valdez, Fevrier
    [J]. GRANULAR COMPUTING, 2019, 4 (02) : 185 - 195
  • [23] Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm
    Marylu L. Lagunes
    Oscar Castillo
    Jose Soria
    Mario Garcia
    Fevrier Valdez
    [J]. Granular Computing, 2019, 4 : 185 - 195
  • [24] Reinforcement evolutionary learning using data mining algorithm with TSK-type fuzzy controllers
    Hsu, Chi-Yao
    Hsu, Yung-Chi
    Lin, Sheng-Fuu
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (03) : 3247 - 3259
  • [25] An evolutionary algorithm for the off-line data driven generation of fuzzy controllers for intelligent buildings
    López, A
    Sánchez, L
    Doctor, F
    Hagras, H
    Callaghan, V
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 42 - 47
  • [26] Coordinated Design of Multiple FACTS Controllers Based on Fuzzy Immune Co-evolutionary Algorithm
    Liu Qing
    Wang Zengzing
    [J]. 2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 852 - 857
  • [27] Optimization of Type-2 Fuzzy Logic Controllers for Mobile Robots Using Evolutionary Methods
    Martinez, Ricardo
    Rodriguez, Antonio
    Castillo, Oscar
    Melin, Patricia
    Aguilar, Luis T.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 4764 - +
  • [28] Evolutionary optimization-based tuning of low-cost fuzzy controllers for servo systems
    Precup, Radu-Emil
    David, Radu-Codrut
    Petriu, Emil M.
    Radac, Mircea-Bogdan
    Preitl, Stefan
    Janos Fodor
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 38 : 74 - 84
  • [29] Optimization of Production Equipment Layout Based on Fuzzy Decision and Evolutionary Algorithm
    Chen, Wenfang
    [J]. INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY, 2019, 11 (03) : 13 - 29
  • [30] Genetic optimization of fuzzy logic controllers
    Jajulwar, Kapil K.
    Deshmnukh, A.Y.
    Bajaj, P.R.
    Keskar, A.G.
    [J]. International Journal of Simulation: Systems, Science and Technology, 2009, 10 (04): : 19 - 24