Evolutionary optimization-based tuning of low-cost fuzzy controllers for servo systems

被引:64
|
作者
Precup, Radu-Emil [1 ]
David, Radu-Codrut [1 ]
Petriu, Emil M. [2 ]
Radac, Mircea-Bogdan [1 ]
Preitl, Stefan [1 ]
Janos Fodor [3 ]
机构
[1] Tech Univ Timisoara, Fac Automat & Comp, Dept Automat & Appl Informat, Politeh, RO-300223 Timisoara, Romania
[2] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON K1N 6N5, Canada
[3] Obuda Univ, Inst Intelligent Engn Syst, H-1034 Budapest, Hungary
关键词
Gravitational Search Algorithm; Parametric sensitivity; Particle Swarm Optimization; Simulated Annealing; Takagi-Sugeno PI fuzzy controllers; CASCADE CONTROLLER; DESIGN; INTERPOLATION;
D O I
10.1016/j.knosys.2011.07.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper suggests the optimal tuning of low-cost fuzzy controllers dedicated to a class of servo systems by means of three new evolutionary optimization algorithms: Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO) algorithm and Simulated Annealing (SA) algorithm. The processes in these servo systems are characterized by second-order models with an integral component and variable parameters; therefore the objective functions in the optimization problems include the output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The servo systems are controlled by Takagi-Sugeno proportional-integral-fuzzy controllers (T-S PI-FCs) that consist of two inputs, triangular input membership functions, nine rules in the rule base, the SUM and PROD operators in the inference engine, and the weighted average method in the defuzzification module. The T-S PI-FCs are implemented as low-cost fuzzy controllers because of their simple structure and of the only three tuning parameters because of mapping the parameters of the linear proportional-integral (PI) controllers onto the parameters of the fuzzy ones in terms of the modal equivalence principle and of the Extended Symmetrical Optimum method. The optimization problems are solved by GSA, PSO and SA resulting in fuzzy controllers with a reduced parametric sensitivity. The comparison of the three evolutionary algorithms is carried out in the framework of a case study focused on the optimal tuning of T-S PI-FCs meant for the position control system of a servo system laboratory equipment. Reduced process gain sensitivity is ensured. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 84
页数:11
相关论文
共 50 条
  • [1] Whale Optimization Algorithm-Based Tuning of Low-Cost Fuzzy Controllers with Reduced Parametric Sensitivity
    David, Radu-Codrut
    Precup, Radu-Emil
    Preitl, Stefan
    Petriu, Emil M.
    Szedlak-Stinean, Alexandra-Iulia
    Roman, Raul-Cristian
    [J]. 2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 440 - 445
  • [2] Low-Cost Tuning of Fuzzy Controllers in a Chaotic System Stabilization Problem
    Umoh, Edwin A.
    [J]. 2014 PAN AFRICAN CONFERENCE ON SCIENCE, COMPUTING AND TELECOMMUNICATIONS (PACT), 2014, : 1 - 6
  • [3] Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems
    Precup, Radu-Emil
    David, Radu-Codrut
    Roman, Raul-Cristian
    Petriu, Emil M.
    Szedlak-Stinean, Alexandra-Iulia
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1042 - 1052
  • [4] AVOA-Based Tuning of Low -Cost Fuzzy Controllers for Tower Crane Systems
    Precup, Radu-Emil
    Hedrea, Elena-Lorena
    Roman, Raul-Cristian
    Petriu, Emil M.
    Bojan-Dragos, Claudia-Adina
    Szedlak-Stinean, Alexandra-Iulia
    Paulescu, Flavius-Catalin
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [5] Tuning of PID controllers:: An optimization-based method
    Neto, CA
    Embiruçu, M
    [J]. DIGITAL CONTROL: PAST, PRESENT AND FUTURE OF PID CONTROL, 2000, : 367 - 372
  • [6] Design of Low-Cost Fuzzy Controllers with Reduced Parametric Sensitivity Based on Whale Optimization Algorithm
    David, Radu-Codrut
    Precup, Radu-Emil
    Preitl, Stefan
    Szedlak-Stinean, Alexandra-Iulia
    Roman, Raul-Cristian
    Petriu, Emil M.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [7] A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS
    Precup, Radu-Emil
    Preitl, Stefan
    Bojan-Dragos, Claudia-Adina
    Hedrea, Elena-Lorena
    Roman, Raul-Cristian
    Petriu, Emil M.
    [J]. FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2022, 20 (01) : 21 - 36
  • [8] An optimization-based method for tuning PI controllers for systems subject to control and output constraints
    Martins, Jose
    Araujo, Fabio
    Dorea, Carlos
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (12): : 145 - 153
  • [9] Low-Cost Neuro-Fuzzy Control Solution for Servo Systems with Variable Parameters
    Stinean, Alexandra-Iulia
    Preitl, Stefan
    Precup, Radu-Emil
    Dragos, Claudia-Adina
    Radac, Mircea-Bogdan
    Petriu, Emil M.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA), 2013, : 156 - 161
  • [10] Low-Cost Fuzzy Control Approaches to a Class of State Feedback-Controlled Servo Systems
    Precup, Radu-Emil
    Ianc, Paul Andrei
    Petriu, Emil M.
    Dragos, Claudia-Adina
    Preitl, Stefan
    Radac, Mircea-Bogdan
    [J]. 2011 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2011, : 1022 - 1027