Path Planning in Unknown Environment with Kernel Smoothing and Reinforcement Learning for Multi-Agent Systems

被引:0
|
作者
Luviano Cruz, David [1 ]
Yu, Wen [1 ]
机构
[1] IPN, CINVESTAV, Dept Control Automat, Mexico City, DF, Mexico
来源
2015 12TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2015) | 2015年
关键词
CONSENSUS; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In unknown environment, path planning of multi-agent systems is difficult. The popular methods for the path planning, such as reinforcement learning (RL), do not work for these two cases: unknown environment and multi-agent. In this paper, we use a special intelligent method, kernel smoothing, to estimate the unknown environment, and combine it with the reinforcement learning technique. The advantage of the combination of the reinforcement learning and the kernel smoothing technique is we do not need to repeat RL for the unvisited state. The path planning process has three stages: 1) the reinforcement learning is applied to generate the training samples; 2) the model is trained by the kernel smoothing method; 3) the trained model gives an approximate action to agents. Experiment results show the proposed algorithm can generate desired paths in the unknown environment for multiple agents.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Optimal bipartite consensus control for heterogeneous unknown multi-agent systems via reinforcement learning
    Meng, Hao
    Pang, Denghao
    Cao, Jinde
    Guo, Yechen
    Niazi, Azmat Ullah Khan
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [32] Towards reinforcement learning for holonic multi-agent systems
    Abdoos, Monireh
    Mozayani, Nasser
    Bazzan, Ana L. C.
    INTELLIGENT DATA ANALYSIS, 2015, 19 (02) : 211 - 232
  • [33] Distributed reinforcement learning in multi-agent decision systems
    Giráldez, JI
    Borrajo, D
    PROGRESS IN ARTIFICIAL INTELLIGENCE-IBERAMIA 98, 1998, 1484 : 148 - 159
  • [34] Shaping multi-agent systems with gradient reinforcement learning
    Olivier Buffet
    Alain Dutech
    François Charpillet
    Autonomous Agents and Multi-Agent Systems, 2007, 15 : 197 - 220
  • [35] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [36] Multi-Agent Deep Reinforcement Learning for Walker Systems
    Park, Inhee
    Moh, Teng-Sheng
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 490 - 495
  • [37] Shaping multi-agent systems with gradient reinforcement learning
    Buffet, Olivier
    Dutech, Alain
    Charpillet, Francois
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2007, 15 (02) : 197 - 220
  • [38] Reinforcement learning of coordination in cooperative multi-agent systems
    Kapetanakis, S
    Kudenko, D
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 326 - 331
  • [39] Multi-Agent Reinforcement Learning in Stochastic Networked Systems
    Lin, Yiheng
    Qu, Guannan
    Huang, Longbo
    Wierman, Adam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [40] Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning
    Qie, Han
    Shi, Dianxi
    Shen, Tianlong
    Xu, Xinhai
    Li, Yuan
    Wang, Liujing
    IEEE ACCESS, 2019, 7 : 146264 - 146272