A new constrained parameter estimator for computer vision applications

被引:24
|
作者
Chojnacki, W [1 ]
Brooks, MJ
van den Hengel, A
Gawley, D
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[2] CRC Sensor Signal & Informat Proc, Mawson Lakes, SA 5095, Australia
关键词
Gaussian errors; maximum likelihood; constrained minimisation; fundamental matrix; epipolar equation; ancillary constraint; singularity constraint;
D O I
10.1016/S0262-8856(03)00140-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method of constrained parameter estimation is proposed for a class of computer vision problems. In a typical application, the parameters will describe a relationship between image feature locations, expressed as an equation linking the parameters and the image data, and will satisfy an ancillary constraint not involving the image data. A salient feature of the method is that it handles the ancillary constraint in an integrated fashion. not by means of a correction process operating upon results of unconstrained minimisation. The method is evaluated through experiments in fundamental matrix computation. Results are given for both synthetic and real images. It is demonstrated that the method produces results commensurate with, or superior to, previous approaches, with the advantage of being faster than comparable techniques. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [21] FORTH FOR COMPUTER VISION IN INDUSTRIAL APPLICATIONS
    LECKY, JE
    [J]. ROBOTICS AGE, 1985, 7 (04): : 25 - 28
  • [22] Constrained parameter estimation with applications to blending operations
    Murakami, K
    Seborg, DE
    [J]. DYNAMICS & CONTROL OF PROCESS SYSTEMS 1998, VOLUMES 1 AND 2, 1999, : 229 - 234
  • [23] Constrained parameter estimation with applications to blending operations
    Murakami, K
    Seborg, DE
    [J]. JOURNAL OF PROCESS CONTROL, 2000, 10 (2-3) : 195 - 202
  • [24] ROBUST CLUSTERING WITH APPLICATIONS IN COMPUTER VISION
    JOLION, JM
    MEER, P
    BATAOUCHE, S
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (08) : 791 - 802
  • [25] Codesign methodology for computer vision applications
    Albaladejo, J
    de Andrés, D
    Lemus, L
    Salvi, J
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2004, 28 (5-6) : 303 - 316
  • [26] Computer vision applications - Special issue
    Smith, Melvyn L.
    Smith, Lyndon N.
    [J]. IMAGE AND VISION COMPUTING, 2007, 25 (07) : 1035 - 1036
  • [27] COMPUTER VISION SYSTEM FOR INDUSTRIAL APPLICATIONS
    YACHIDA, M
    [J]. JAPAN ANNUAL REVIEWS IN ELECTRONICS COMPUTERS & TELECOMMUNICATIONS, 1984, 12 : 221 - 235
  • [28] Computer vision applications in power substations
    Chan, WL
    Leo
    Pang, SL
    Ma, CF
    [J]. PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION, RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1 AND 2, 2004, : 383 - 388
  • [29] An M-estimator for high breakdown robust estimation in computer vision
    Hoseinnezhad, Reza
    Bab-Hadiashar, Alireza
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (08) : 1145 - 1156
  • [30] On Parameter Tuning in Meta-learning for Computer Vision
    Mohammadi, Farid Ghareh
    Arabnia, Hamid R.
    Amini, M. Hadi
    [J]. 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 300 - 305