Constrained parameter estimation with applications to blending operations

被引:0
|
作者
Murakami, K [1 ]
Seborg, DE [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
blending systems; least squares; constrained parameter estimation; inequality constraints; quadratic programming;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The classical least squares approach ignores a priori information about the feasible values of the estimated parameters. But in many practical problems, such information is available in the form of upper and lower limits. In this paper, two alternative techniques are evaluated for this important class of constrained parameter estimation problems for linear, dynamic systems. Simulation results for two blending problems illustrate that more accurate parameter estimates and better predictions can be obtained using a quadratic programming approach. Copyright (C) 1998 IFAC.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条
  • [1] Constrained parameter estimation with applications to blending operations
    Murakami, K
    Seborg, DE
    [J]. JOURNAL OF PROCESS CONTROL, 2000, 10 (2-3) : 195 - 202
  • [2] Performance Bounds for Constrained Parameter Estimation
    Routtenberg, Tirza
    Tabrikian, Joseph
    [J]. 2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 513 - 516
  • [3] CONSTRAINED BAYES ESTIMATION WITH APPLICATIONS
    GHOSH, M
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) : 533 - 540
  • [4] Covariance matrices for parameter estimates of constrained parameter estimation problems
    Bock, Hans Georg
    Kostina, Ekaterina
    Kostyukova, Olga
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 626 - 642
  • [5] Generalized filleting and blending operations toward functional and decorative applications
    Elber, G
    [J]. GRAPHICAL MODELS, 2005, 67 (03) : 189 - 203
  • [6] Constrained logarithmic least squares in parameter estimation
    Bai, EW
    Ye, YY
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) : 182 - 186
  • [7] Hard-constrained versus soft-constrained parameter estimation
    Benavoli, A.
    Chisci, L.
    Farina, A.
    Ortenzi, L.
    Zappa, G.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (04) : 1224 - 1239
  • [8] Constrained Wine Blending
    Vismara, Philippe
    Coletta, Remi
    Trombettoni, Gilles
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2013, 2013, 8124 : 864 - 879
  • [9] Bounded blending operations
    Pasko, G
    Pasko, A
    Ikeda, M
    Kunii, T
    [J]. SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2002, : 95 - 103
  • [10] Inequality constrained parameter estimation using filtering approaches
    Yang, Xiongtan
    Huang, Biao
    Prasad, Vinay
    [J]. CHEMICAL ENGINEERING SCIENCE, 2014, 106 : 211 - 221