Constrained parameter estimation with applications to blending operations

被引:0
|
作者
Murakami, K [1 ]
Seborg, DE [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
blending systems; least squares; constrained parameter estimation; inequality constraints; quadratic programming;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The classical least squares approach ignores a priori information about the feasible values of the estimated parameters. But in many practical problems, such information is available in the form of upper and lower limits. In this paper, two alternative techniques are evaluated for this important class of constrained parameter estimation problems for linear, dynamic systems. Simulation results for two blending problems illustrate that more accurate parameter estimates and better predictions can be obtained using a quadratic programming approach. Copyright (C) 1998 IFAC.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条