A new constrained parameter estimator for computer vision applications

被引:24
|
作者
Chojnacki, W [1 ]
Brooks, MJ
van den Hengel, A
Gawley, D
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[2] CRC Sensor Signal & Informat Proc, Mawson Lakes, SA 5095, Australia
关键词
Gaussian errors; maximum likelihood; constrained minimisation; fundamental matrix; epipolar equation; ancillary constraint; singularity constraint;
D O I
10.1016/S0262-8856(03)00140-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method of constrained parameter estimation is proposed for a class of computer vision problems. In a typical application, the parameters will describe a relationship between image feature locations, expressed as an equation linking the parameters and the image data, and will satisfy an ancillary constraint not involving the image data. A salient feature of the method is that it handles the ancillary constraint in an integrated fashion. not by means of a correction process operating upon results of unconstrained minimisation. The method is evaluated through experiments in fundamental matrix computation. Results are given for both synthetic and real images. It is demonstrated that the method produces results commensurate with, or superior to, previous approaches, with the advantage of being faster than comparable techniques. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [1] MINPRAN - A NEW ROBUST ESTIMATOR FOR COMPUTER VISION
    STEWART, CV
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (10) : 925 - 938
  • [2] A reinforcement learning framework for parameter control in computer vision applications
    Taylor, GW
    [J]. 1ST CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS, 2004, : 496 - 503
  • [3] A new class of Zernike moments for computer vision applications
    Papakostas, G. A.
    Boutalis, Y. S.
    Karras, D. A.
    Mertzios, B. G.
    [J]. INFORMATION SCIENCES, 2007, 177 (13) : 2802 - 2819
  • [4] COMPUTER VISION APPLICATIONS
    GRIMSON, WEL
    MUNDY, JL
    [J]. COMMUNICATIONS OF THE ACM, 1994, 37 (03) : 45 - 51
  • [5] Tensor scale: A local morphometric parameter with applications to computer vision and image processing
    Saha, PK
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2005, 99 (03) : 384 - 413
  • [6] Robust parameter estimation in computer vision
    Stewart, CV
    [J]. SIAM REVIEW, 1999, 41 (03) : 513 - 537
  • [7] Multimedia applications of computer vision
    Asmuth, J
    Dixon, D
    Hanna, K
    Hsu, SC
    Kumar, R
    Paragano, V
    Pope, A
    Samarasekera, S
    Sawhney, H
    [J]. FOURTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION - WACV'98, PROCEEDINGS, 1998, : 290 - 291
  • [8] COMPUTER VISION FOR INDUSTRIAL APPLICATIONS
    LOSTY, JA
    WATKINS, PR
    [J]. GEC JOURNAL OF RESEARCH, 1983, 1 (01): : 24 - 34
  • [9] Computer vision for security applications
    Sage, K
    Young, S
    [J]. 32ND ANNUAL 1998 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY, 1998, : 210 - 215
  • [10] THE COMPLEXITY OF APPLICATIONS IN COMPUTER VISION
    KLETTE, R
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 1989, : 16 - 19