A reinforcement learning framework for parameter control in computer vision applications

被引:3
|
作者
Taylor, GW [1 ]
机构
[1] Univ Waterloo, Pattern Anal & Machine Intelligence Lab, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1109/CCCRV.2004.1301489
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework for solving the parameter selection problem for computer vision applications using reinforcement learning agents. Connectionist-based function approximation is employed to reduce the state space. Automatic determination of fuzzy membership functions is stated as a specific case of the parameter selection problem. Entropy of a fuzzy event is used as a reinforcement. We have carried out experiments to generate brightness membership functions for several images. The results show that the reinforcement learning approach is superior to an existing simulated annealing-based approach.
引用
收藏
页码:496 / 503
页数:8
相关论文
共 50 条
  • [1] Reinforcement Learning in Computer Vision
    Bernstein, A. V.
    Burnaev, E. V.
    [J]. TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [2] Parameter Control Framework for Multiobjective Evolutionary Computation Based on Deep Reinforcement Learning
    Zhou, Tianwei
    Zhang, Wenwen
    Niu, Ben
    He, Pengcheng
    Yue, Guanghui
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [3] Generic Parameter Control with Reinforcement Learning
    Karafotias, Giorgos
    Eiben, Agoston Endre
    Hoogendoorn, Mark
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 1319 - 1326
  • [4] Deep reinforcement learning in computer vision: a comprehensive survey
    Ngan Le
    Vidhiwar Singh Rathour
    Kashu Yamazaki
    Khoa Luu
    Marios Savvides
    [J]. Artificial Intelligence Review, 2022, 55 : 2733 - 2819
  • [5] Deep reinforcement learning in computer vision: a comprehensive survey
    Le, Ngan
    Rathour, Vidhiwar Singh
    Yamazaki, Kashu
    Luu, Khoa
    Savvides, Marios
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (04) : 2733 - 2819
  • [6] A new constrained parameter estimator for computer vision applications
    Chojnacki, W
    Brooks, MJ
    van den Hengel, A
    Gawley, D
    [J]. IMAGE AND VISION COMPUTING, 2004, 22 (02) : 85 - 91
  • [7] A Least Median of Squares Method Based on Fuzzy Reinforcement Learning for Modeling of Computer Vision Applications
    Watanabe, Toshihiko
    Ishimaru, Tomoki
    [J]. 2016 JOINT 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 17TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2016, : 65 - 71
  • [8] On Parameter Tuning in Meta-learning for Computer Vision
    Mohammadi, Farid Ghareh
    Arabnia, Hamid R.
    Amini, M. Hadi
    [J]. 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 300 - 305
  • [9] Fuel-Saving Control Strategy for Fuel Vehicles with Deep Reinforcement Learning and Computer Vision
    Han, Ling
    Liu, Guopeng
    Zhang, Hui
    Fang, Ruoyu
    Zhu, Changsheng
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (03) : 609 - 621
  • [10] Fuel-Saving Control Strategy for Fuel Vehicles with Deep Reinforcement Learning and Computer Vision
    Ling Han
    Guopeng Liu
    Hui Zhang
    Ruoyu Fang
    Changsheng Zhu
    [J]. International Journal of Automotive Technology, 2023, 24 : 609 - 621