Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems

被引:22
|
作者
Robinson, James C.
Rodriguez-Bernal, Anibal [1 ]
Vidal-Lopez, Alejandro
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1016/j.jde.2007.03.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse the dynamics of the non-autonomous nonlinear reaction-diffusion equation u(t) - Delta u = f(t, x, u), subject to appropriate boundary conditions, proving the existence of two bounding complete trajectories, one maximal and one minimal. Our main assumption is that the nonlinear term satisfies a bound of the form f(t, x, u)u <= C(t, x)vertical bar u vertical bar(2) + D(t, x)vertical bar u vertical bar, where the linear evolution operator associated with Delta + C(t, x) is exponentially stable. As an important step in our argument we give a detailed analysis of the exponential stability properties of the evolution operator for the non-autonomous linear problem u(t) - Delta u = C(t, x)u between different L-P spaces. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:289 / 337
页数:49
相关论文
共 50 条
  • [41] Pullback attractors of non-autonomous micropolar fluid flows
    Chen, Jianwen
    Dong, Bo-Qing
    Chen, Zhi-Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1384 - 1394
  • [42] Weak pullback attractors of non-autonomous difference inclusions
    Kloeden, PE
    Marín-Rubio, P
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (05) : 489 - 502
  • [43] Pullback Exponential Attractors for Non-autonomous Lattice Systems
    Zhou, Shengfan
    Han, Xiaoying
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (03) : 601 - 631
  • [44] Pullback attractors in H1(RN) for non-autonomous nonclassical diffusion equations
    Zhang, Fanghong
    Liu, Yongfeng
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (01): : 106 - 118
  • [45] An exponential growth condition in H2 for the pullback attractor of a non-autonomous reaction-diffusion equation
    Anguiano, M.
    Caraballo, T.
    Real, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) : 4071 - 4075
  • [46] On pullback attractors in Lp for nonautonomous reaction-diffusion equations
    Lukaszewicz, G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 350 - 357
  • [47] PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS
    Bezerra, Flank D. M.
    Carbone, Vera L.
    Nascimento, Marcelo J. D.
    Schiabel, Karina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3553 - 3571
  • [48] PULLBACK ATTRACTORS FOR NON-AUTONOMOUS MGT-FOURIER SYSTEM
    Wang, Yang
    Wu, Jihui
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025, 14 (03): : 564 - 579
  • [49] PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS
    Sun, Wenlong
    Li, Yeping
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) : 1370 - 1392
  • [50] Pullback Exponential Attractors for Nonautonomous Reaction-Diffusion Equations
    Yan, Xingjie
    Qi, Wei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):