Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems

被引:22
|
作者
Robinson, James C.
Rodriguez-Bernal, Anibal [1 ]
Vidal-Lopez, Alejandro
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1016/j.jde.2007.03.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse the dynamics of the non-autonomous nonlinear reaction-diffusion equation u(t) - Delta u = f(t, x, u), subject to appropriate boundary conditions, proving the existence of two bounding complete trajectories, one maximal and one minimal. Our main assumption is that the nonlinear term satisfies a bound of the form f(t, x, u)u <= C(t, x)vertical bar u vertical bar(2) + D(t, x)vertical bar u vertical bar, where the linear evolution operator associated with Delta + C(t, x) is exponentially stable. As an important step in our argument we give a detailed analysis of the exponential stability properties of the evolution operator for the non-autonomous linear problem u(t) - Delta u = C(t, x)u between different L-P spaces. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:289 / 337
页数:49
相关论文
共 50 条
  • [31] The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space
    Xie, Yongqin
    Zhu, Kaixuan
    Sun, Chunyou
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [32] H2-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation
    Anguiano, M.
    Caraballo, T.
    Real, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 876 - 880
  • [33] Kolmogorov ε-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems
    Vishik, MI
    Chepyzhov, VV
    SBORNIK MATHEMATICS, 1998, 189 (1-2) : 235 - 263
  • [34] Pullback attractors for non-autonomous reaction-diffusion equation with infinite delays in Cγ,Lr(Ω) or Cγ,W1,r(Ω)
    Ran, Yanping
    Li, Jing
    BOUNDARY VALUE PROBLEMS, 2018,
  • [35] Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations
    Zhou, Shengfan
    Tian, Yongxiao
    Wang, Zhaojuan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 80 - 95
  • [36] Pullback attractors of nonautonomous reaction-diffusion equations
    Song, Haitao
    Wu, Hongqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 1200 - 1215
  • [37] Time-dependent attractors for non-autonomous non-local reaction-diffusion equations
    Caraballo, Tomas
    Herrera-Cobos, Marta
    Marin-Rubio, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (05) : 957 - 981
  • [38] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Reaction-diffusion Equations
    Shu Ji
    Bai Qianqian
    Huang Xin
    Zhang Jian
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (04): : 377 - 394
  • [39] REGULAR RANDOM ATTRACTORS FOR NON-AUTONOMOUS STOCHASTIC REACTION-DIFFUSION EQUATIONS ON THIN DOMAINS
    Li, Dingshi
    Wang, Xuemin
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (02): : 1969 - 1990
  • [40] Pullback Exponential Attractors for Non-autonomous Lattice Systems
    Shengfan Zhou
    Xiaoying Han
    Journal of Dynamics and Differential Equations, 2012, 24 : 601 - 631