Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems

被引:22
|
作者
Robinson, James C.
Rodriguez-Bernal, Anibal [1 ]
Vidal-Lopez, Alejandro
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1016/j.jde.2007.03.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse the dynamics of the non-autonomous nonlinear reaction-diffusion equation u(t) - Delta u = f(t, x, u), subject to appropriate boundary conditions, proving the existence of two bounding complete trajectories, one maximal and one minimal. Our main assumption is that the nonlinear term satisfies a bound of the form f(t, x, u)u <= C(t, x)vertical bar u vertical bar(2) + D(t, x)vertical bar u vertical bar, where the linear evolution operator associated with Delta + C(t, x) is exponentially stable. As an important step in our argument we give a detailed analysis of the exponential stability properties of the evolution operator for the non-autonomous linear problem u(t) - Delta u = C(t, x)u between different L-P spaces. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:289 / 337
页数:49
相关论文
共 50 条
  • [1] Pullback attractors for the non-autonomous reaction-diffusion equations in RN
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    Li, Xin
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [2] Pullback attractors for non-autonomous reaction-diffusion equations on ℝn
    Bixiang Wang
    Frontiers of Mathematics in China, 2009, 4 : 563 - 583
  • [3] On the existence of pullback attractors for non-autonomous reaction-diffusion equations
    Wang, Yonghai
    Zhong, Chengkui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (01): : 1 - 16
  • [4] Pullback attractors for non-autonomous reaction-diffusion equations on Rn
    Wang, Bixiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (03) : 563 - 583
  • [5] Pullback attractors for non-autonomous reaction-diffusion equations in Lp
    Li, Yongjun
    Wang, Suyun
    Wu, Hongqing
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 373 - 379
  • [6] Pullback attractors for a class of non-autonomous reaction-diffusion equations in Rn
    Zhang, Qiangheng
    BOUNDARY VALUE PROBLEMS, 2017,
  • [7] Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in RN
    Zhu, Kaixuan
    Zhou, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 2089 - 2105
  • [8] On Pullback Attractors in H2 for Non-autonomous Reaction-diffusion Equations
    Li, Hongyan
    Zhang, Weisi
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 693 - 696
  • [9] Lp-PULLBACK ATTRACTORS FOR NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS WITH DELAYS
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 9 - 27
  • [10] Pullback attractors of non-autonomous reaction-diffusion equations in H01
    Song, Haitao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (10) : 2357 - 2376