Three pairs of congruences concerning sums of central binomial coefficients

被引:1
|
作者
Mao, Guo-Shuai [1 ]
Tauraso, Roberto [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
基金
中国国家自然科学基金;
关键词
Congruence; central binomial coefficient; p-adic gamma function; hypergeometric functions; harmonic numbers; NUMBERS; FERMAT;
D O I
10.1142/S1793042121500895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently the first author proved a congruence proposed in 2006 by Adamchuk: Sigma([2p/3])(k=1) (2k k) = 0 (mod p(2)) for any prime p = 1 (mod 3). In this paper, we provide more examples (with proofs) of congruences of the same kind Sigma([ap/r])(k=1) (2k k)x(k) (mod p(2)) where p is a prime such that p = 1 (mod r), a/r is a fraction in (1/2, 1) and x is a p-adic integer. The key ingredients are the p-adic Gamma function Gamma(p) and a special class of computer-discovered hypergeometric identities.
引用
收藏
页码:2301 / 2314
页数:14
相关论文
共 50 条