Ammonium hydroxide effect on low-temperature wafer bonding energy enhancement

被引:30
|
作者
Chao, YL [1 ]
Tong, QY
Lee, TH
Reiche, M
Scholz, R
Woo, JCS
Gösele, U
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[3] Max Planck Inst Microstruct Phys, D-06120 Halle An Der Saale, Germany
关键词
D O I
10.1149/1.1857671
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A wafer prebonding treatment by ammonium hydroxide (NH4OH) leading to a high bonding strength at low temperatures is presented in three material systems. After 200 degrees C annealing, a surface energy of about 700 mJ/m(2) for thermal silicon-oxide bonding and of 1300 mJ/m(2) for plasma-enhanced chemical vapor deposition oxide bonding is realized. It is suggested that the lower ability of ammonia, the by-product of a polymerization reaction, to break the siloxane (Si-O-Si) bridging bonds appears to be responsible for the increase in surface energy in both silicon oxide bonding cases. NH4OH treatment is also effective on bare germanium/ silicon-oxide bonding with a surface energy of 800 mJ/m(2). A highly hydrophilic germanium surface obtained by this treatment accounts for the high bonding energy. (C) 2005 The Electrochemical Society.
引用
收藏
页码:G74 / G77
页数:4
相关论文
共 50 条
  • [1] Wafer bonding by low-temperature soldering
    Lee, C
    Huang, WF
    Shie, JS
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2000, 85 (1-3) : 330 - 334
  • [2] LOW-TEMPERATURE WAFER DIRECT BONDING
    TONG, QY
    CHA, GH
    GAFITEANU, R
    GOSELE, U
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1994, 3 (01) : 29 - 35
  • [3] Influence of Bonding Atmosphere on Low-Temperature Wafer Bonding
    Wang, Ying-Hui
    Suga, Tadatomo
    [J]. 2010 PROCEEDINGS 60TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2010, : 435 - 439
  • [4] Low-temperature Au/Si wafer bonding
    Jing, E.
    Xiong, B.
    Wang, Y.
    [J]. ELECTRONICS LETTERS, 2010, 46 (16) : 1143 - U72
  • [5] Hydrophilic low-temperature direct wafer bonding
    Ventosa, C.
    Rieutord, F.
    Libralesso, L.
    Morales, C.
    Fournel, F.
    Moriceau, H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (12)
  • [6] Low-temperature full wafer adhesive bonding
    Niklaus, F
    Enoksson, P
    Kälvesten, E
    Stemme, G
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2001, 11 (02) : 100 - 107
  • [7] Low-temperature hydrophobic silicon wafer bonding
    Tong, QY
    Gan, Q
    Hudson, G
    Fountain, G
    Enquist, P
    Scholz, R
    Gösele, U
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (23) : 4767 - 4769
  • [8] LOW-TEMPERATURE SILICON-WAFER BONDING
    QUENZER, HJ
    BENECKE, W
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1992, 32 (1-3) : 340 - 344
  • [9] LOW-TEMPERATURE, HIGH-STRENGTH, WAFER-TO-WAFER BONDING
    FLEMING, JG
    ROHERTYOSMUN, E
    GODSHALL, NA
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (11) : 3300 - 3302
  • [10] Low-Temperature Wafer-to-Wafer Hybrid Bonding by Nanocrystalline Copper
    Chiu, Wei-Lan
    Lee, Ou-Hsiang
    Chiang, Chia-Wen
    Chang, Hsiang-Hung
    [J]. IEEE 72ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2022), 2022, : 679 - 684