Comprehensive Head and Neck Organs at Risk Segmentation Using Stratified Learning and Neural Architecture Search

被引:0
|
作者
Ho, T. Y. [1 ]
Guo, D. [2 ]
Jin, D. [2 ]
Zhu, Z. [3 ]
Hung, T. M. [4 ,5 ]
Xiao, J. [6 ]
Lu, L. [2 ]
Lin, C. Y.
机构
[1] Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
[2] PAII Inc, Bethesda, MD USA
[3] Johns Hopkins Univ, Baltimore, MD USA
[4] Chang Gung Mem Hosp, Dept Radiat Oncol, Taoyuan, Taiwan
[5] Chang Gung Mem Hosp, Proton Ctr, Taoyuan, Taiwan
[6] Ping Technol, Shenzhen, Peoples R China
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2757
引用
收藏
页码:E369 / E370
页数:2
相关论文
共 50 条
  • [41] Automatic segmentation of Organs at Risk in Head and Neck cancer patients from CT and MRI scans
    Quetin, Sebastien
    Heschl, Andrew
    Murillo, Mauricio
    Enger, Shirin A.
    Maleki, Farhad
    MEDICAL PHYSICS, 2024, 51 (08) : 5834 - 5835
  • [42] Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer
    Kosmin, M.
    Ledsam, J.
    Romera-Paredes, B.
    Mendes, R.
    Moinuddin, S.
    de Souza, D.
    Gunn, L.
    Kelly, C.
    Hughes, C. O.
    Karthikesalingam, A.
    Nutting, C.
    Sharma, R. A.
    RADIOTHERAPY AND ONCOLOGY, 2019, 135 : 130 - 140
  • [43] Auto-segmentation of head and neck organs at risk in radiotherapy and its dependence on anatomic similarity
    Ayyalusamy, Anantharaman
    Vellaiyan, Subramani
    Subramanian, Shanmuga
    Ilamurugu, Arivarasan
    Satpathy, Shyama
    Nauman, Mohammed
    Katta, Gowtham
    Madineni, Aneesha
    RADIATION ONCOLOGY JOURNAL, 2019, 37 (02): : 134 - 142
  • [44] Automatic segmentation of organs-at-risk from head-and-neck CT using separable convolutional neural network with hard-region-weighted loss
    Lei, Wenhui
    Mei, Haochen
    Sun, Zhengwentai
    Ye, Shan
    Gu, Ran
    Wang, Huan
    Huang, Rui
    Zhang, Shichuan
    Zhang, Shaoting
    Wang, Guotai
    NEUROCOMPUTING, 2021, 442 : 184 - 199
  • [45] Automatic segmentation of head and neck organs at risk based on three-dimensional U-NET deep convolutional neural network
    Dai, Xiangkun
    Wang, Xiaoshen
    Du, Lehui
    Ma, Na
    Xu, Shouping
    Cai, Boning
    Wang, Shuxin
    Wang, Zhonguo
    Qu, Baolin
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2020, 37 (01): : 136 - 141
  • [46] Neural Architecture Search for Microscopy Cell Segmentation
    Zhu, Yanming
    Meijering, Erik
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 542 - 551
  • [47] Neural Architecture Search for Visual Anomaly Segmentation
    Kerssies, Tommie
    Vanschoren, Joaquin
    INTERNATIONAL CONFERENCE ON AUTOMATED MACHINE LEARNING, VOL 224, 2023, 224
  • [48] Evolving blocks by segmentation for neural architecture search
    Zhao, Xiaoping
    Jiang, Liwen
    Slowik, Adam
    Zhang, Zhenman
    Xue, Yu
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 2016 - 2032
  • [49] External validation of deep learning-based contouring of head and neck organs at risk
    Brunenberg, Ellen J. L.
    Steinseifer, Isabell K.
    van den Bosch, Sven
    Kaanders, Johannes H. A. M.
    Brouwer, Charlotte L.
    Gooding, Mark J.
    van Elmpt, Wouter
    Monshouwer, Rene
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 15 : 8 - 15
  • [50] External validation of deep learning-based contouring of head and neck organs at risk
    Brunenberg, E.
    Steinseifer, I.
    Van den Bosch, S.
    Kaanders, H.
    Brouwer, C.
    Monshouwer, R.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S341 - S342