Comprehensive Head and Neck Organs at Risk Segmentation Using Stratified Learning and Neural Architecture Search

被引:0
|
作者
Ho, T. Y. [1 ]
Guo, D. [2 ]
Jin, D. [2 ]
Zhu, Z. [3 ]
Hung, T. M. [4 ,5 ]
Xiao, J. [6 ]
Lu, L. [2 ]
Lin, C. Y.
机构
[1] Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
[2] PAII Inc, Bethesda, MD USA
[3] Johns Hopkins Univ, Baltimore, MD USA
[4] Chang Gung Mem Hosp, Dept Radiat Oncol, Taoyuan, Taiwan
[5] Chang Gung Mem Hosp, Proton Ctr, Taoyuan, Taiwan
[6] Ping Technol, Shenzhen, Peoples R China
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2757
引用
收藏
页码:E369 / E370
页数:2
相关论文
共 50 条
  • [31] Neural Architecture Search Using Metaheuristics for Automated Cell Segmentation
    Kus, Zeki
    Aydin, Musa
    Kiraz, Berna
    Can, Burhanettin
    METAHEURISTICS, MIC 2022, 2023, 13838 : 158 - 171
  • [32] OCT Image Segmentation Using Neural Architecture Search and SRGAN
    Dehzangi, Omid
    Gheshlaghi, Saba Heidari
    Amireskandari, Annahita
    Nasrabadi, Nasser M.
    Rezai, Ali
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6425 - 6430
  • [33] Segmentation of head-and-neck organs-at-risk in longitudinal CT scans combining deformable registrations and convolutional neural networks
    Vandewinckele L.
    Willems S.
    Robben D.
    Van Der Veen J.
    Crijns W.
    Nuyts S.
    Maes F.
    Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8 (05): : 519 - 528
  • [34] Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning
    Czipczer, Vanda
    Kolozsvari, Bernadett
    Deak-Karancsi, Borbala
    Capala, Marta E.
    Pearson, Rachel A.
    Borzasi, Emoke
    Egyud, Zsofia
    Gaal, Szilvia
    Kelemen, Gyongyi
    Koszo, Renata
    Paczona, Viktor
    Vegvary, Zoltan
    Karancsi, Zsofia
    Kekesi, Adam
    Czunyi, Edina
    Irmai, Blanka H.
    Keresnyei, Nora G.
    Nagypal, Petra
    Czabany, Renata
    Gyalai, Bence
    Tass, Bulcsu P.
    Cziria, Balazs
    Cozzini, Cristina
    Estkowsky, Lloyd
    Ferenczi, Lehel
    Fronto, Andras
    Maxwell, Ross
    Megyeri, Istvan
    Mian, Michael
    Tan, Tao
    Wyatt, Jonathan
    Wiesinger, Florian
    Hideghety, Katalin
    McCallum, Hazel
    Petit, Steven F.
    Rusko, Laszlo
    FRONTIERS IN PHYSICS, 2023, 11
  • [35] Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring
    van Dijk, Lisanne V.
    Van den Bosch, Lisa
    Aljabar, Paul
    Peressutti, Devis
    Both, Stefan
    Steenbakkers, Roel. J. H. M.
    Langendijk, Johannes A.
    Gooding, Mark J.
    Brouwer, Charlotte L.
    RADIOTHERAPY AND ONCOLOGY, 2020, 142 : 115 - 123
  • [36] Delineation of organs at risk in the head and neck region
    Francesca, De Felice
    Vincenzo, Tombolini
    ORAL ONCOLOGY, 2018, 87 : 197 - 198
  • [37] Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods
    Vrtovec, Tomaz
    Mocnik, Domen
    Strojan, Primoz
    Pernus, Franjo
    Ibragimov, Bulat
    MEDICAL PHYSICS, 2020, 47 (09) : E929 - E950
  • [38] Deep-Learning-Based Automatic Segmentation of Head and Neck Organs for Radiation Therapy in Dogs
    Park, Jeongsu
    Choi, Byoungsu
    Ko, Jaeeun
    Chun, Jaehee
    Park, Inkyung
    Lee, Juyoung
    Kim, Jayon
    Kim, Jaehwan
    Eom, Kidong
    Kim, Jin Sung
    FRONTIERS IN VETERINARY SCIENCE, 2021, 8
  • [39] Is Public Data Enough? A Comparison of Public and Institutional Deep Learning Models for Segmentation of 17 Organs-At-Risk in the Head and Neck
    Clark, Brett
    Hardcastle, Nicholas
    Jackson, Price
    Johnston, Leigh
    Korte, James
    MEDICAL PHYSICS, 2022, 49 (06) : E158 - E159
  • [40] SEGMENTATION OF ORGANS-AT-RISK FROM CT AND MR IMAGES OF THE HEAD AND NECK: BASELINE RESULTS
    Podobnik, Gasper
    Ibragimov, Bulat
    Strojan, Primoz
    Peterlin, Primoz
    Vrtovec, Tomaz
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,