Data Driven Computing with noisy material data sets

被引:148
|
作者
Kirchdoerfer, T. [1 ]
Ortiz, M. [1 ]
机构
[1] CALTECH, Grad Aerosp Labs, 1200 E Calif Blvd,MC 105-50, Pasadena, CA 91125 USA
关键词
Data science; Big data; Approximation theory; Scientific computing; INVERSE MATERIAL IDENTIFICATION; MATERIALS INFORMATICS; DATA SCIENCE; ERROR; BEHAVIOR;
D O I
10.1016/j.cma.2017.07.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We formulate a Data Driven Computing paradigm, termed max-ent Data Driven Computing, that generalizes distance-minimizing Data Driven Computing and is robust with respect to outliers. Robustness is achieved by means of clustering analysis. Specifically, we assign data points a variable relevance depending on distance to the solution and on maximum-entropy estimation. The resulting scheme consists of the minimization of a suitably-defined free energy over phase space subject to compatibility and equilibrium constraints. Distance-minimizing Data Driven schemes are recovered in the limit of zero temperature. We present selected numerical tests that establish the convergence properties of the max-ent Data Driven solvers and solutions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:622 / 641
页数:20
相关论文
共 50 条
  • [31] Data-driven nonparametric tolerance sets
    Frey, Jesse
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (02) : 169 - 180
  • [32] Policy-driven management of data sets
    Holl, Jim
    Roussos, Kostadis
    Voll, Jim
    USENIX ASSOCIATION PROCEEDING OF THE 21ST LARGE INSTALLATION SYSTEMS ADMINISTRATION CONFERENCE, 2007, : 131 - 140
  • [33] Data-driven approximation and reduction from noisy data in matrix pencils frameworks
    Kergus, Pauline
    Gosea, Ion Victor
    IFAC PAPERSONLINE, 2022, 55 (30): : 371 - 376
  • [34] DATA-DRIVEN CHARACTERIZATION OF COMPOSITES BASED ON VIRTUAL DETERMINISTIC AND NOISY MULTIAXIAL DATA
    Michopoulos, J. G.
    Furukawa, T.
    Lambrakos, S. G.
    DETC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATIONAL IN ENGINEERING CONFERENCE, VOL 3, PTS A AND B: 28TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2009, : 1095 - 1106
  • [35] A Behavioral Approach to Data-Driven Control With Noisy Input-Output Data
    van Waarde, Henk J.
    Eising, Jaap
    Camlibel, M. Kanat
    Trentelman, Harry L.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 813 - 827
  • [36] Cognitive computing, Big Data Analytics and data driven industrial marketing
    Lytras, Miltiadis
    Visvizi, Anna
    Zhang, Xi
    Aljohani, Naif Radi
    INDUSTRIAL MARKETING MANAGEMENT, 2020, 90 : 663 - 666
  • [38] Data-Driven Granular Cognitive Computing
    Wang, Guoyin
    ROUGH SETS, 2017, 10313 : 13 - 24
  • [39] Computing minimal sets of descriptive conditions for binary data
    Belohlavek, Radim
    Vychodil, Vilem
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (05) : 521 - 534
  • [40] Adaptive estimation of convex polytopes and convex sets from noisy data
    Brunel, Victor-Emmanuel
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1301 - 1327