Data Driven Computing with noisy material data sets

被引:148
|
作者
Kirchdoerfer, T. [1 ]
Ortiz, M. [1 ]
机构
[1] CALTECH, Grad Aerosp Labs, 1200 E Calif Blvd,MC 105-50, Pasadena, CA 91125 USA
关键词
Data science; Big data; Approximation theory; Scientific computing; INVERSE MATERIAL IDENTIFICATION; MATERIALS INFORMATICS; DATA SCIENCE; ERROR; BEHAVIOR;
D O I
10.1016/j.cma.2017.07.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We formulate a Data Driven Computing paradigm, termed max-ent Data Driven Computing, that generalizes distance-minimizing Data Driven Computing and is robust with respect to outliers. Robustness is achieved by means of clustering analysis. Specifically, we assign data points a variable relevance depending on distance to the solution and on maximum-entropy estimation. The resulting scheme consists of the minimization of a suitably-defined free energy over phase space subject to compatibility and equilibrium constraints. Distance-minimizing Data Driven schemes are recovered in the limit of zero temperature. We present selected numerical tests that establish the convergence properties of the max-ent Data Driven solvers and solutions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:622 / 641
页数:20
相关论文
共 50 条
  • [21] Data-driven discovery of linear dynamical systems from noisy data
    YaSen Wang
    Ye Yuan
    HuaZhen Fang
    Han Ding
    Science China Technological Sciences, 2024, 67 : 121 - 129
  • [22] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129
  • [23] Data-Driven Learning for Data Rights, Data Pricing, and Privacy Computing
    Xu, Jimin
    Hong, Nuanxin
    Xu, Zhening
    Zhao, Zhou
    Wu, Chao
    Kuang, Kun
    Wang, Jiaping
    Zhu, Mingjie
    Zhou, Jingren
    Ren, Kui
    Yang, Xiaohu
    Lu, Cewu
    Pei, Jian
    Shum, Harry
    ENGINEERING, 2023, 25 : 66 - 76
  • [24] Identifying Patterns and Relationships within Noisy Acoustic Data Sets
    Balakrishnan, Krithika
    Bar-Kochba, Eyal
    Iwaskiw, Alexander S.
    Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2022, 36 (03): : 259 - 269
  • [25] Identifying Patterns and Relationships within Noisy Acoustic Data Sets
    Balakrishnan, Krithika
    Bar-Kochba, Eyal
    Iwaskiw, Alexander S.
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2022, 36 (03): : 259 - 269
  • [26] Improved niching and encoding strategies for clustering noisy data sets
    Nasraoui, O
    Leon, E
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 1324 - 1325
  • [27] Surrogates for finding unstable periodic, orbits in noisy data sets
    Dolan, K
    Witt, A
    Spano, ML
    Neiman, A
    Moss, F
    PHYSICAL REVIEW E, 1999, 59 (05) : 5235 - 5241
  • [28] Graphical approach to weak motif recognition in noisy data sets
    Ho, Loi Sy
    Rajapakse, Jagath C.
    PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2006, 4146 : 23 - +
  • [29] An investigation on the coupling of data-driven computing and model-driven computing
    Yang, Jie
    Huang, Wei
    Huang, Qun
    Hu, Heng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [30] On computing the forces from the noisy displacement data of an elastic body
    Reddy, A. Narayana
    Ananthasuresh, G. K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (11) : 1645 - 1677