Data Driven Computing with noisy material data sets

被引:148
|
作者
Kirchdoerfer, T. [1 ]
Ortiz, M. [1 ]
机构
[1] CALTECH, Grad Aerosp Labs, 1200 E Calif Blvd,MC 105-50, Pasadena, CA 91125 USA
关键词
Data science; Big data; Approximation theory; Scientific computing; INVERSE MATERIAL IDENTIFICATION; MATERIALS INFORMATICS; DATA SCIENCE; ERROR; BEHAVIOR;
D O I
10.1016/j.cma.2017.07.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We formulate a Data Driven Computing paradigm, termed max-ent Data Driven Computing, that generalizes distance-minimizing Data Driven Computing and is robust with respect to outliers. Robustness is achieved by means of clustering analysis. Specifically, we assign data points a variable relevance depending on distance to the solution and on maximum-entropy estimation. The resulting scheme consists of the minimization of a suitably-defined free energy over phase space subject to compatibility and equilibrium constraints. Distance-minimizing Data Driven schemes are recovered in the limit of zero temperature. We present selected numerical tests that establish the convergence properties of the max-ent Data Driven solvers and solutions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:622 / 641
页数:20
相关论文
共 50 条
  • [1] Efficient data-driven optimization with noisy data
    Parys, Bart P. G. Van
    OPERATIONS RESEARCH LETTERS, 2024, 54
  • [2] Data-Driven Ambiguity Sets for Linear Systems Under Disturbances and Noisy Observations
    Boskos, Dimitris
    Cortes, Jorge
    Martinez, Sonia
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 4491 - 4496
  • [3] Surface reconstruction of noisy and defective data sets
    Xie, H
    McDonnell, KT
    Qin, H
    IEEE VISUALIZATION 2004, PROCEEEDINGS, 2004, : 259 - 266
  • [4] Data-Driven Reachability Analysis From Noisy Data
    Alanwar, Amr
    Koch, Anne
    Allgoewer, Frank
    Johansson, Karl Henrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 3054 - 3069
  • [5] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [6] Soft computing on small data sets
    Novak, B.
    Informatica (Ljubljana), 2001, 25 (01) : 83 - 88
  • [7] Data Driven Prognostics with Lack of Training Data Sets
    Xi, Zhimin
    Zhao, Xiangxue
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 2A, 2016,
  • [8] Data-Driven Polytopic Output Synchronization From Noisy Data
    Li, Yifei
    Liu, Wenjie
    Wang, Gang
    Sun, Jian
    Xie, Lihua
    Chen, Jie
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8513 - 8525
  • [9] Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data
    Guo, Meichen
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4210 - 4217
  • [10] CALCULATING LYAPUNOV EXPONENTS FOR SHORT AND OR NOISY DATA SETS
    BROWN, R
    PHYSICAL REVIEW E, 1993, 47 (06): : 3962 - 3969