Multigate Ferroelectric Transistor Design Toward 3-nm Technology Node

被引:12
|
作者
Choe, Gihun [1 ]
Yu, Shimeng [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
Iron; Logic gates; Transistors; FinFETs; FeFETs; Nanostructures; Semiconductor process modeling; Ferroelectric field-effect transistor (FeFET); ferroelectrics (FEs); FinFET; nanosheets; nonvolatile memory; FUTURE;
D O I
10.1109/TED.2021.3108477
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An advanced gate-stack design of ferroelectric (FE) transistors has been proposed and investigated for logic compatible program/erase voltage, better scalability, and suppressed depolarization field. The ferroelectric-metal (FeM) FinFET (FeM-FinFET) and stacked nanosheets transistor (FeM-Nanosheet), which have an FE layer on top of the transistor's gate, could adjust the area ratio (AR) between the FE capacitor (A(FE)) and the MOS capacitor (A(MOS)) (AR = A(FE)/A(MOS)) using the floating gate between them, thereby enhancing the electric field on the FE layer. In particular, the proposed FeM-Nanosheet could have the flexibility to lower the operating voltage and depolarization field by increasing the number of nanosheets to reduce the AR.
引用
收藏
页码:5908 / 5911
页数:4
相关论文
共 50 条
  • [41] Design of Multiple Node Upset Tolerant Latch in 32 nm CMOS Technology
    Huang Z.
    Cao D.
    Cui J.
    Lu Y.
    Ouyang Y.
    Qi H.
    Xu Q.
    Liang H.
    Ni T.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (03): : 346 - 355
  • [42] FinFET-Based Inverter Design and Optimization at 7 Nm Technology Node
    Jena, J.
    Jena, D.
    Mohapatra, E.
    Das, S.
    Dash, T. P.
    SILICON, 2022, 14 (16) : 10781 - 10794
  • [43] Source/drain stressor design for advanced devices at 7 nm technology node
    Dash T.P.
    Dey S.
    Das S.
    Jena J.
    Mahapatra E.
    Maiti C.K.
    Nanoscience and Nanotechnology - Asia, 2020, 10 (04): : 447 - 456
  • [44] Innovative Design of Crackstop Wall for 14nm Technology Node and Beyond
    Rabie, Mohamed A.
    Polomoff, Nicholas A.
    Hassan, Md Khaled
    Calero-DdelC, Victoria L.
    Degraw, Danielle
    Hecker, Michael
    Thiele, Michael
    Bazizi, El Mehdi
    2018 IEEE 68TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2018), 2018, : 460 - 466
  • [45] Design of ECP additive for 65 nm-node technology CuBEOL reliability
    Shih, CH
    Chou, SW
    Lin, CJ
    Ko, T
    Su, HW
    Wu, CM
    Tsai, MH
    Shue, WS
    Yu, CH
    Liang, MS
    PROCEEDINGS OF THE IEEE 2005 INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 2005, : 102 - 104
  • [46] A Comparative Study of CMOS and Carbon Nanotube Field Effect Transistor Based Inverter at 32 nm Technology Node
    Saha, P.
    Jain, A.
    Sarkar, S. K.
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 : S424 - S426
  • [48] Pushing the Boundaries: Design and Simulation Approach of Negative Capacitance Nanosheet FETs with Ferroelectric and Dielectric Spacers at the Sub-3 nm Technology Node for Analog/RF/Mixed Signal Applications
    Valasa, Sresta
    Kotha, Venkata Ramakrishna
    Vadthiya, Narendar
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (05) : 3206 - 3215
  • [49] An Optimum Design of the Carbon Nanotube Field Effect Transistor for Analog Applications in 10 nm Technology
    Chua, W. H.
    Uttraphan, C.
    Kok, B. C.
    2020 18TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2020, : 222 - 227
  • [50] SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction
    Zhang, K
    Bhattacharya, U
    Chen, ZP
    Hamzaoglu, F
    Murray, D
    Vallepalli, N
    Wang, Y
    Zheng, B
    Bohr, M
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (04) : 895 - 901