Global existence and convergence rates for the 3-D compressible micropolar equations without heat conductivity

被引:1
|
作者
Liu, Lvqiao [1 ]
Huang, Bingkang [1 ]
Zhang, Lan [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; convergence rates; micropolar fluid; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; TIME DECAY; PLANCK; MODEL;
D O I
10.1080/00036811.2020.1716973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the 3-D full compressible micropolar fluid with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness and optimal convergence rates are established for any small initial data and bounded -norm by combining the local existence and a priori estimates. A priori decay-in-time estimates on the pressure and velocity are used to get the uniform bound of entropy.
引用
收藏
页码:3366 / 3382
页数:17
相关论文
共 50 条