Parameter identification of BLDC motor model via metaheuristic optimization techniques

被引:4
|
作者
Kumpanya, Danupon [1 ]
Thaiparnat, Sattarpoom [2 ]
Puangdownreong, Deacha [3 ]
机构
[1] Ragamangala Univ Technol Suvarnabhumi RUS, Fac Engn & Architecture, Suphanburi, Thailand
[2] RUS, Fac Business Adm & Informat Technol, Suphanburi, Thailand
[3] South East Asia Univ, Grad Sch, Dept Elect Engn, Bangkok, Thailand
关键词
Parameter identification; bldc motor model; adaptive tabu search; intensified current search;
D O I
10.1016/j.promfg.2015.11.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The brushless dc (BLDC) motor has been increasingly used in industrial automation, automotive, aerospace, instrumentation and appliances. Analysis and design of the BLDC motor efficiently require its accurate model and parameters. In this paper, the parameter identification of the BLDC motor model via well-known metaheuristic optimization search techniques is proposed. Two trajectory-based methods, i.e. adaptive tabu search (ATS) and intensified current search (ICS) are employed to estimate the BLDC motor parameters. As simulation results of model identification and validation, both ATS and ICS can provide optimal BLDC model parameters. The BLDC models obtained show a very good agreement to actual system dynamics. However, the ICS can pro-vide optimal model parameters faster than the ATS. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [41] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [42] PSO-based evolutionary optimization for parameter identification of an induction motor
    Karimi, Ali
    Choudhry, Muhammad A.
    Feliachi, Ali
    2007 39TH NORTH AMERICAN POWER SYMPOSIUM, VOLS 1 AND 2, 2007, : 659 - 664
  • [43] Process Parameter Optimization of Hydrostatic Extrusion Using Metaheuristic
    Panda, S.
    Mishra, D.
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2018, 17 (04) : 487 - 504
  • [44] Parameter optimization of the switched reluctance motor based on the inductance model
    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou
    221008, China
    不详
    221116, China
    Diangong Jishu Xuebao, 7 (97-104):
  • [45] Parameter identification of induction motor model using genetic algorithms
    Alonge, F
    D'Ippolito, F
    Ferrante, G
    Raimondi, FM
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06): : 587 - 593
  • [46] The parameter identification of superplastic constitutive model using optimization
    Jin, QL
    Wu, HY
    ADVANCES IN ENGINEERING PLASTICITY, PTS 1-2, 2000, 177-1 : 607 - 612
  • [47] Parameter Identification and Model Validation for the Piezoelectric Actuator in an Inertia Motor
    Hunstig, Matthias
    Hemsel, Tobias
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (04) : 952 - 954
  • [48] Intelligence Optimization in Parameter Identification of the Border Irrigation Model
    Li, Jianwen
    Sun, Xihuan
    Ma, Juanjuan
    Guo, Xianghong
    Li, Jingling
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 11 - 18
  • [49] Parameter identification of chaotic optical systems based on intelligent optimization techniques
    Ye, Meiyng
    Wang, Xiaodong
    NONLINEAR OPTICS: TECHNOLOGIES AND APPLICATIONS, 2008, 6839
  • [50] Detection of holes in a plate using global optimization and parameter identification techniques
    Lopes, Patricia da Silva
    Jorge, Ariosto Bretanha
    Cunha, Sebastiao Simoes, Jr.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2010, 18 (04) : 439 - 463