Parameter identification of BLDC motor model via metaheuristic optimization techniques

被引:4
|
作者
Kumpanya, Danupon [1 ]
Thaiparnat, Sattarpoom [2 ]
Puangdownreong, Deacha [3 ]
机构
[1] Ragamangala Univ Technol Suvarnabhumi RUS, Fac Engn & Architecture, Suphanburi, Thailand
[2] RUS, Fac Business Adm & Informat Technol, Suphanburi, Thailand
[3] South East Asia Univ, Grad Sch, Dept Elect Engn, Bangkok, Thailand
关键词
Parameter identification; bldc motor model; adaptive tabu search; intensified current search;
D O I
10.1016/j.promfg.2015.11.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The brushless dc (BLDC) motor has been increasingly used in industrial automation, automotive, aerospace, instrumentation and appliances. Analysis and design of the BLDC motor efficiently require its accurate model and parameters. In this paper, the parameter identification of the BLDC motor model via well-known metaheuristic optimization search techniques is proposed. Two trajectory-based methods, i.e. adaptive tabu search (ATS) and intensified current search (ICS) are employed to estimate the BLDC motor parameters. As simulation results of model identification and validation, both ATS and ICS can provide optimal BLDC model parameters. The BLDC models obtained show a very good agreement to actual system dynamics. However, the ICS can pro-vide optimal model parameters faster than the ATS. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [31] Practical Modeling and Comprehensive System Identification of a BLDC Motor
    Xiang, Changle
    Wang, Xiaoliang
    Ma, Yue
    Xu, Bin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [32] Optimization of the BLDC Motor Considering the Fluctuation of the Design Variables
    Son, Byoung-Ook
    Kim, Young-kwan
    Lee, Ju
    2009 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2009, : 579 - +
  • [33] Parameter Identification of BLDC Motor Using Electromechanical Tests and Recursive Least-Squares Algorithm: Experimental Validation
    Jimenez-Gonzalez, Jose
    Gonzalez-Montanez, Felipe
    Manuel Jimenez-Mondragon, Victor
    Ulises Liceaga-Castro, Jesus
    Escarela-Perez, Rafael
    Carlos Olivares-Galvan, Juan
    ACTUATORS, 2021, 10 (07)
  • [34] PARAMETER IDENTIFICATION TECHNIQUES APPLIED TO AN ENVIRONMENTAL POLLUTION MODEL
    Wang, Yuepeng
    Cheng, Yue
    Navon, I. Michael
    Guan, Yuanhong
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (02) : 817 - 831
  • [35] Identifying dynamic model parameters of a BLDC motor
    Kapun, A.
    Curkovic, M.
    Hace, A.
    Jezernik, K.
    SIMULATION MODELLING PRACTICE AND THEORY, 2008, 16 (09) : 1254 - 1265
  • [36] Sensor BLDC Motor Model in Simulink Environment
    Hubik, V.
    Singule, V.
    RECENT ADVANCES IN MECHATRONICS: 2008-2009, 2009, : 275 - 280
  • [37] Critical evaluation of cogging torque in BLDC motor with various techniques
    Doss, M. Arun Noyal
    Jeevananthan, S.
    Dash, Subhransu Sekhar
    Hussain, M. Jahir
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2013, 7 (03) : 135 - 146
  • [38] Study of Control Techniques for Torque Ripple Reduction in BLDC Motor
    Bondre, Vinita S.
    Thosar, Archana G.
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,
  • [39] The Squirrel-Cage Induction Motor Model and Its Parameter Identification Via Steady and Dynamic Tests
    Morfin, Onofre A.
    Castaneda, Carlos E.
    Ruiz-Cruz, Riemann
    Valenzuela, Fredy A.
    Murillo, Miguel A.
    Quezada, Abel E.
    Padilla, Nahitt
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2018, 46 (03) : 302 - 315
  • [40] Multipopulational Metaheuristic Approaches to Real-Parameter Optimization
    Snasel, Vaclav
    Kroemer, Pavel
    GENETIC AND EVOLUTIONARY COMPUTING, 2015, 329 : 99 - 108