THE FAREY MAPS MODULO n

被引:0
|
作者
Singerman, D. [1 ]
Strudwick, J. [1 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton, Hants, England
来源
关键词
Farey graph; regular map; modular surface; automorphisms of Riemann surfaces; REGULAR MAPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Farey map is the universal triangular map whose automorphism group is the classical modular group. We study the quotients of the Farey map by the principal congrience subgroups of the modular group. These include many well-known regular triangular maps. We also study the underlying graphs of these quotients.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 50 条
  • [21] FIBONACCI(N) MODULO N SEQUENCE
    Zyuz'kov, Valentin Mikhailovich
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2013, (24): : 15 - 23
  • [22] On the Multiplicative Order of a(n) Modulo n
    Chappelon, Jonathan
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (02)
  • [23] Similarity of pairs of linear maps defined modulo a subspace
    Garcia-Planas, M. Isabel
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (05): : 379 - 389
  • [24] On Farey sequence and quadratic Farey sums
    Michel J. G. Weber
    Research in Number Theory, 2022, 8
  • [25] ON THE QUADRATIC FORMULA MODULO n
    Wright, Steve
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 7 (01): : 33 - 68
  • [26] Sum sequences modulo n
    Chung, Fan
    Folkman, Jon
    Graham, Ron
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 : 290 - 314
  • [27] CONGRUENCE MODULO-N
    BLOOM, DM
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03): : 304 - 305
  • [28] Power digraphs modulo n
    Wilson, B
    FIBONACCI QUARTERLY, 1998, 36 (03): : 229 - 239
  • [29] ARITHMETIC FOR XN MODULO N
    FRANZ, EA
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (08): : 924 - &
  • [30] A note on n! modulo p
    M. Z. Garaev
    J. Hernández
    Monatshefte für Mathematik, 2017, 182 : 23 - 31