A Non-Parametric Algorithm for Discovering Triggering Patterns of Spatio-Temporal Event Types

被引:1
|
作者
Batu, Berna Bakir [1 ]
Temizel, Tugba Taskaya [2 ]
Duzgun, H. Sebnem [3 ]
机构
[1] Univ Paris SudGif Sur, Lab Rech Informat, F-91190 Paris, France
[2] Middle East Tech Univ, Dept Informat Syst, Informat Inst, TR-06530 Ankara, Turkey
[3] Colorado Sch Mines, Dept Min Engn, Golden, CO 80401 USA
关键词
Diggle D; Hawkes self-exciting process; multivariate Hawkes model; space-time clustering; spatio-temporal sequences; stochastic declustering; POINT-PROCESS MODELS;
D O I
10.1109/TKDE.2017.2754252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal or spatio-temporal sequential pattern discovery is a well-recognized important problem in many domains like seismology, criminology, and finance. The majority of the current approaches are based on candidate generation which necessitates parameter tuning, namely, definition of a neighborhood, an interest measure, and a threshold value to evaluate candidates. However, their performance is limited as the success of these methods relies heavily on parameter settings. In this paper, we propose an algorithm which uses a nonparametric stochastic de-clustering procedure and a multivariate Hawkes model to define triggering relations within and among the event types and employs the estimated model to extract significant triggering patterns of event types. We tested the proposed method with real and synthetic data sets exhibiting different characteristics. The method gives good results that are comparable with the methods based on candidate generation in the literature.
引用
收藏
页码:2629 / 2642
页数:14
相关论文
共 50 条
  • [1] Non-Parametric Analysis of Spatial and Spatio-Temporal Point Patterns
    Gonzalez, Jonatan A.
    Moraga, Paula
    R JOURNAL, 2023, 15 (01): : 65 - 82
  • [2] Non-parametric smoothing of spatio-temporal point processes
    Grillenzoni, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 61 - 78
  • [3] Non-parametric Spatio-temporal Activity Learning from Overhead Imagery
    Sahin, Cem S.
    Koester, Evan
    Li, Zhongheng
    Bouillet, Evan
    AUTOMATIC TARGET RECOGNITION XXXII, 2022, 12096
  • [4] Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling
    Du, Xin
    Pei, Yulong
    Duivesteijn, Wouter
    Pechenizkiy, Mykola
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (05) : 1267 - 1290
  • [5] Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling
    Xin Du
    Yulong Pei
    Wouter Duivesteijn
    Mykola Pechenizkiy
    Data Mining and Knowledge Discovery, 2020, 34 : 1267 - 1290
  • [6] Discovering association patterns in large spatio-temporal databases
    Lee, Eric M. H.
    Chan, Keith C. C.
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 349 - +
  • [7] On the spatio-temporal distribution of M 7.0+ worldwide seismicity with a non-parametric statistics
    Faenza, Licia
    Marzocchi, Wamer
    Serretti, Paola
    Boschi, Enzo
    TECTONOPHYSICS, 2008, 449 (1-4) : 97 - 104
  • [8] A Systematic Scheme for Non-parametric Spatio-Temporal Trend Analysis about Aridity Index
    Gul, Sajid
    Ren, Jingli
    Zhu, Yunlong
    Xiong, Neal N.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 981 - 986
  • [9] Non-Parametric Modeling of Spatio-Temporal Human Activity Based on Mobile Robot Observations
    Stuede, Marvin
    Schappler, Moritz
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 126 - 133
  • [10] Discovering a celestial object using a non-parametric algorithm
    Jayanth P Vyasanakere
    Siddharth Bhatnagar
    Jayant Murthy
    Pramana, 2021, 95