Binary Images of Z2Z4-Additive Cyclic Codes

被引:8
|
作者
Borges, Joaquim [1 ]
Dougherty, Steven T. [2 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Bellaterra 08193, Spain
[2] Univ Scranton, Dept Math, Scranton, PA 18510 USA
关键词
Cyclic codes over Z(2) and Z(4); Gray map; Nechaev permutation; Z(2)Z(4)-additive cyclic; POLYNOMIALS;
D O I
10.1109/TIT.2018.2837882
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. We study the binary images of Z(2)Z(4)-additive cyclic codes. We determine all Z(2)Z(4)-additive cyclic codes with odd beta whose Gray images are linear binary codes. In this case, it is shown that such binary codes are permutation equivalent (by the Nechaev permutation) to Z(2)-double cyclic codes. Finally, the generator polynomials of these binary codes are given.
引用
收藏
页码:7551 / 7556
页数:6
相关论文
共 50 条
  • [31] CYCLIC CODES OF LENGTH 2(n) OVER Z(4)
    Woo, Sung Sik
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (01): : 39 - 54
  • [32] A note on cyclic codes over Z(4)
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (01)
  • [33] Reversible cyclic codes over Z(4)
    Abualrub, Taher
    Siap, Irfan
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 38 : 195 - 205
  • [34] ON Z4Z4[u3]-ADDITIVE CONSTACYCLIC CODES
    Prakash, Om
    Yadav, Shikha
    Islam, Habibul
    Sole, Patrick
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 246 - 261
  • [35] Cyclic codes over Z4 + uZ4 + u2Z4
    Ozen, Mehmet
    Ozzaim, Nazmiye Tugba
    Aydin, Nuh
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1235 - 1247
  • [36] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [37] Cyclic codes and quadratic residue codes over Z(4)
    Pless, VS
    Qian, ZQ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1594 - 1600
  • [38] Z2-double cyclic codes
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (03) : 463 - 479
  • [39] Some constacyclic codes over Z2k and binary quasi-cyclic codes
    Tapia-Recillas, H
    Vega, G
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 305 - 316
  • [40] Optimal binary linear codes and Z(4)-linearity
    Encheva, SB
    Jensen, HE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1216 - 1222