Binary Images of Z2Z4-Additive Cyclic Codes

被引:8
|
作者
Borges, Joaquim [1 ]
Dougherty, Steven T. [2 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Bellaterra 08193, Spain
[2] Univ Scranton, Dept Math, Scranton, PA 18510 USA
关键词
Cyclic codes over Z(2) and Z(4); Gray map; Nechaev permutation; Z(2)Z(4)-additive cyclic; POLYNOMIALS;
D O I
10.1109/TIT.2018.2837882
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. We study the binary images of Z(2)Z(4)-additive cyclic codes. We determine all Z(2)Z(4)-additive cyclic codes with odd beta whose Gray images are linear binary codes. In this case, it is shown that such binary codes are permutation equivalent (by the Nechaev permutation) to Z(2)-double cyclic codes. Finally, the generator polynomials of these binary codes are given.
引用
收藏
页码:7551 / 7556
页数:6
相关论文
共 50 条
  • [21] Counting Z2Z4Z8-additive codes
    Caliskan, Basri
    Balikci, Kemal
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (02): : 668 - 679
  • [22] On Z2Z4[ξ]-skew cyclic codes
    Gursoy, Fatmanur
    Aydogdu, Ismail
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1613 - 1633
  • [23] Z4R-additive cyclic and constacyclic codes and MDSS codes
    Ghajari, Arazgol
    Khashyarmanesh, Kazem
    Abualrub, Taher
    Siap, Irfan
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [24] On Z2Z2[u]Z2[u, v]-additive cyclic codes and their application in obtaining optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Khan, Naim
    [J]. FILOMAT, 2024, 38 (08) : 2899 - 2914
  • [25] Additive Codes over Z2 x Z4
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Dougherty, Steven T.
    [J]. 2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [26] On Z2Z2[u3]-Additive Cyclic and Complementary Dual Codes
    Hou, Xiaotong
    Meng, Xiangrui
    Gao, Jian
    [J]. IEEE ACCESS, 2021, 9 : 65914 - 65924
  • [27] Z2Z2[u4]-cyclic codes and their duals
    Srinivasulu, B.
    Seneviratne, Padmapani
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [28] Quantum codes from Z2Z2[u]/⟨u4⟩-cyclic codes
    Biswas, Soumak
    Bhaintwal, Maheshanand
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (02) : 343 - 366
  • [29] Quasi-cyclic codes over Z4 and some new binary codes
    Aydin, N
    Ray-Chaudhuri, DK
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 2065 - 2069
  • [30] Z2Z2[u]-Cyclic and Constacyclic Codes
    Aydogdu, Ismail
    Abualrub, Taher
    Siap, Irfan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4883 - 4893