RETRIEVAL OF CASE 2 WATER QUALITY PARAMETERS WITH MACHINE LEARNING

被引:0
|
作者
Ruescas, Ana B. [1 ]
Mateo-Garcia, Gonzalo [1 ]
Camps-Valls, Gustau [1 ]
Hieronymi, Martin [2 ]
机构
[1] Univ Valencia, IPL, Valencia, Spain
[2] Helmholtz Zentrum Geesthacht, Inst Coastal Res, Geesthacht, Germany
基金
欧洲研究理事会;
关键词
Remote Sensing; Water Quality Parameters; Case 2 Absorbing Waters; Machine Learning Regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Water quality parameters are derived applying several machine learning regression methods on the Case2eXtreme dataset (C2X). The used data are based on Hydrolight in-water radiative transfer simulations at Sentinel-3 OLCI wavebands, and the application is done exclusively for absorbing waters with high concentrations of coloured dissolved organic matter (CDOM). The regression approaches are: regularized linear, random forest, Kernel ridge, Gaussian process and support vector regressors. The validation is made with and an independent simulation dataset. A comparison with the OLCI Neural Network Swarm (ONSS) is made as well. The best approached is applied to a sample scene and compared with the standard OLCI product delivered by EUMETSAT/ESA.
引用
收藏
页码:124 / 127
页数:4
相关论文
共 50 条
  • [41] Machine learning algorithms for efficient water quality prediction
    Azrour, Mourade
    Mabrouki, Jamal
    Fattah, Ghizlane
    Guezzaz, Azedine
    Aziz, Faissal
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (02) : 2793 - 2801
  • [42] Forecasting Groundwater Quality Parameters using Machine Learning Models: a Case Study of Khemismiliana Plain, Algeria
    A. Tachi
    M. Metaiche
    A. Messoul
    H. Bouguerra
    S. E. Tachi
    [J]. Doklady Earth Sciences, 2023, 512 : 907 - 914
  • [43] Prediction of wastewater quality parameters using adaptive and machine learning models: A South African case study
    Sheik, Abdul Gaffar
    Malla, Muneer Ahmad
    Srungavarapu, Chandra Sainadh
    Patan, Ameer Khan
    Kumari, Sheena
    Bux, Faizal
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2024, 67
  • [44] Forecasting Groundwater Quality Parameters using Machine Learning Models: a Case Study of Khemismiliana Plain, Algeria
    Tachi, A.
    Metaiche, M.
    Messoul, A.
    Bouguerra, H.
    Tachi, S. E.
    [J]. DOKLADY EARTH SCIENCES, 2023, 512 (01) : 907 - 914
  • [45] HICO LEVEL-2 DATA PROCESSING TOOLBOX FOR THE ATMOSPHERIC CORRECTION AND THE RETRIEVAL OF WATER QUALITY PARAMETERS
    Vicent, J.
    Sabater, N.
    Tenjo, C.
    Ruiz-Verdu, A.
    Delegido, J.
    Pena-Martinez, R.
    Moreno, J.
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [46] Assessment and prediction of Water Quality Index (WQI) by seasonal key water parameters in a coastal city: application of machine learning models
    Mo, Yuming
    Xu, Jing
    Liu, Chanjuan
    Wu, Jinran
    Chen, Dong
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (11)
  • [47] Do Machine-Learning Atomic Descriptors and Order Parameters Tell the Same The Case of Liquid Water
    Donkor, Edward Danquah
    Laio, Alessandro
    Hassanali, Ali
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4596 - 4605
  • [48] Retrieval of subsurface dissolved oxygen from surface oceanic parameters based on machine learning
    Ping, Bo
    Meng, Yunshan
    Su, Fenzhen
    Xue, Cunjin
    Li, Zhi
    [J]. MARINE ENVIRONMENTAL RESEARCH, 2024, 199
  • [49] MACHINE LEARNING APPLICATIONS FOR CLASSIFICATION AND RETRIEVAL OF SURFACE PARAMETERS FROM GNSS-R.
    Santi, E.
    Pettinato, S.
    Comite, D.
    Pierdicca, N.
    Dente, L.
    Guerriero, L.
    Clarizia, M. P.
    Floury, Nicolas
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1174 - 1177
  • [50] Investigating machine learning models in predicting lake water quality parameters as a 3-year moving average
    Faezeh Gorgan-Mohammadi
    Taher Rajaee
    Mohammad Zounemat-Kermani
    [J]. Environmental Science and Pollution Research, 2023, 30 : 63839 - 63863