Machine learning-based exceptional response prediction of nivolumab monotherapy with circulating microRNAs in non-small cell lung cancer

被引:5
|
作者
Zhang, Yifan [1 ]
Goto, Yasushi [2 ]
Yagishita, Shigehiro [3 ]
Shinno, Yuki [2 ]
Mizuno, Kazue [1 ]
Watanabe, Naoaki [4 ]
Yamamoto, Yusuke [4 ]
Ota, Nobuyuki [5 ]
Ochiya, Takahiro [6 ,7 ]
Fujita, Yu [7 ,8 ,9 ]
机构
[1] Preferred Networks Inc, Tokyo, Japan
[2] Natl Canc Ctr, Dept Thorac Oncol, Tokyo, Japan
[3] Natl Canc Ctr, Div Mol Pharmacol, Tokyo, Japan
[4] Natl Canc Ctr, Lab Integrat Oncol, Tokyo, Japan
[5] Preferred Med Inc, Burlingame, CA USA
[6] Tokyo Med Univ, Inst Med Sci, Dept Mol & Cellular Med, Tokyo, Japan
[7] Natl Canc Ctr, Div Mol & Cellular Med, Tokyo, Japan
[8] Jikei Univ, Dept Translat Res Exosomes, Sch Med, Tokyo, Japan
[9] Jikei Univ, Sch Med, 3-25-8 Nishi Shimbashi,Minato Ku, Tokyo 1058461, Japan
关键词
FUNCTIONAL-ANALYSIS; DOCETAXEL; SELECTION; THERAPY; TARGETS;
D O I
10.1016/j.lungcan.2022.09.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immune checkpoint inhibitors (ICIs) have significantly improved the survival of advanced non-small cell lung cancer (NSCLC). Detecting NSCLC patients with exceptional response to ICIs is necessary to improve the treatment. This case control study profiled circulating microRNA expressions of 213 NSCLC patients treated with nivolumab monotherapy to identify patients with exceptional response. Based on the response and progression-free survival, patients were divided into 3 groups: Exceptional-responder (n = 27), Resistance (n = 161), and Others (n = 25). Resistance group was further randomly partitioned into six non-overlapping sets (n = 26 or 27), while each partition was combined with Exceptional-responder and Others to make balanced datasets. We built machine learning models optimized for identifying Exceptional-responder via 3-group classification and constructed a panel of 45 microRNAs and 3 fields of clinical information. Machine learning models based on the selected panel achieved 0.81-0.89 (median 0.85) sensitivity and 0.52-0.71 (median 0.59) precision for Exceptional-responder in 3-group classification with 5-fold cross validation in all six datasets constructed, while conventional method relying on tumor PD-L1 immunohistochemistry achieved 0.44-0.44 sensitivity and 0.55-0.67 (median 0.62) precision. This study demonstrated the machine learning models achieved much higher sensitivity and accuracy in identifying Exceptional-responder to nivolumab monotherapy when comparing to conventional method only using companion PD-L1 testing.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [31] Individualized Prediction of Early Post-Treatment Mortality Risk in Stage I Non-Small Cell Lung Cancer: A Machine Learning-Based Approach
    Li, R.
    Shinde, A.
    Liu, A.
    Amini, A.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E135 - E136
  • [32] A unique set of 6 circulating microRNAs for early detection of non-small cell lung cancer
    Halvorsen, Ann Rita
    Bjaanaes, Maria
    LeBlanc, Marissa
    Holm, Are M.
    Bolstad, Nils
    Rubio, Luis
    Penalver, Juan Carlos
    Cervera, Jose
    Mojarrieta, Julia Cruz
    Lopez-Guerrero, Jose Antonio
    Brustugun, Odd Terje
    Helland, Aslaug
    [J]. ONCOTARGET, 2016, 7 (24) : 37250 - 37259
  • [33] Evaluation of the lung immune prognostic index in advanced non-small cell lung cancer patients under nivolumab monotherapy
    Ruiz-Banobre, Juan
    Areses-Manrique, Maria C.
    Mosquera-Martinez, Joaquin
    Cortego, Alexandra
    Afonso-Afonso, Francisco J.
    de Dios-Alvarez, Noemi
    Fernandez-Nunez, Natalia
    Azpitarte-Raposeiras, Cristina
    Amenedo, Margarita
    Santome, Lucia
    Luis Firvida-Perez, Jose
    Garcia-Campelo, Rosario
    Garcia-Gonzalez, Jorge
    Casal-Rubio, Joaquin
    Vazquez, Sergio
    [J]. TRANSLATIONAL LUNG CANCER RESEARCH, 2019, 8 (06) : 1078 - +
  • [34] Novel machine learning algorithm to predict response to immunotherapy in patients with small cell and non-small cell lung cancer
    Sharma, Lakshya
    Choi, Sunyoung
    Balaji, Vaishnavi
    Joshi, Adwait
    Mporas, Iosif
    Shi, Jiaqi
    Zhao, Yi
    Tailor, Vipula
    Shah, Riyaz N. H.
    Waters, Justin S.
    Adeleke, Sola Michael
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [35] Prediction of TTF-1 expression in non-small-cell lung cancer using machine learning-based radiomics
    Ruijie Zhang
    Xiankai Huo
    Qian Wang
    Juntao Zhang
    Shaofeng Duan
    Quan Zhang
    Shicai Zhang
    [J]. Journal of Cancer Research and Clinical Oncology, 2023, 149 : 4547 - 4554
  • [36] Role of microRNAs in the metastasis of non-small cell lung cancer
    Li, Shenglei
    Gao, Ming
    Li, Zongming
    Song, Lijie
    Gao, Xianzheng
    Han, Jing
    Wang, Feng
    Chen, Yongfang
    Li, WenCai
    Yang, Jianping
    Han, Xinwei
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2016, 21 : 998 - 1005
  • [37] MicroRNAs associated with therapy of non-small cell lung cancer
    Lu, Junmi
    Zhan, Yuting
    Feng, Juan
    Luo, Jiadi
    Fan, Songqing
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2018, 14 (04): : 390 - 397
  • [38] MicroRNAs EXPRESSION PROFILES IN NON-SMALL CELL LUNG CANCER
    Yaroglu, Hatice Yildirim
    Akbayir, Serin
    Gorur, Aysegul
    Balci, Senay
    Unal, Nil
    Ayaz, Lokman
    Ayan, Erhan
    Tamer, Lulufer
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (7A): : 9107 - 9113
  • [39] Regulation Mechanism of MicroRNAs in Non-Small Cell Lung Cancer
    Gong, Feng-Yun
    Bai, Tao
    Zhang, Ding-Yu
    Huang, Chao-lin
    Lv, Jing
    Wang, Jing-Li
    Hu, Xu-Dong
    Wang, Juan
    Liu, Wei
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2017, 23 (39) : 5973 - 5982
  • [40] Prediction of TTF-1 expression in non-small-cell lung cancer using machine learning-based radiomics
    Zhang, Ruijie
    Huo, Xiankai
    Wang, Qian
    Zhang, Juntao
    Duan, Shaofeng
    Zhang, Quan
    Zhang, Shicai
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (08) : 4547 - 4554