Machine learning-based exceptional response prediction of nivolumab monotherapy with circulating microRNAs in non-small cell lung cancer

被引:5
|
作者
Zhang, Yifan [1 ]
Goto, Yasushi [2 ]
Yagishita, Shigehiro [3 ]
Shinno, Yuki [2 ]
Mizuno, Kazue [1 ]
Watanabe, Naoaki [4 ]
Yamamoto, Yusuke [4 ]
Ota, Nobuyuki [5 ]
Ochiya, Takahiro [6 ,7 ]
Fujita, Yu [7 ,8 ,9 ]
机构
[1] Preferred Networks Inc, Tokyo, Japan
[2] Natl Canc Ctr, Dept Thorac Oncol, Tokyo, Japan
[3] Natl Canc Ctr, Div Mol Pharmacol, Tokyo, Japan
[4] Natl Canc Ctr, Lab Integrat Oncol, Tokyo, Japan
[5] Preferred Med Inc, Burlingame, CA USA
[6] Tokyo Med Univ, Inst Med Sci, Dept Mol & Cellular Med, Tokyo, Japan
[7] Natl Canc Ctr, Div Mol & Cellular Med, Tokyo, Japan
[8] Jikei Univ, Dept Translat Res Exosomes, Sch Med, Tokyo, Japan
[9] Jikei Univ, Sch Med, 3-25-8 Nishi Shimbashi,Minato Ku, Tokyo 1058461, Japan
关键词
FUNCTIONAL-ANALYSIS; DOCETAXEL; SELECTION; THERAPY; TARGETS;
D O I
10.1016/j.lungcan.2022.09.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immune checkpoint inhibitors (ICIs) have significantly improved the survival of advanced non-small cell lung cancer (NSCLC). Detecting NSCLC patients with exceptional response to ICIs is necessary to improve the treatment. This case control study profiled circulating microRNA expressions of 213 NSCLC patients treated with nivolumab monotherapy to identify patients with exceptional response. Based on the response and progression-free survival, patients were divided into 3 groups: Exceptional-responder (n = 27), Resistance (n = 161), and Others (n = 25). Resistance group was further randomly partitioned into six non-overlapping sets (n = 26 or 27), while each partition was combined with Exceptional-responder and Others to make balanced datasets. We built machine learning models optimized for identifying Exceptional-responder via 3-group classification and constructed a panel of 45 microRNAs and 3 fields of clinical information. Machine learning models based on the selected panel achieved 0.81-0.89 (median 0.85) sensitivity and 0.52-0.71 (median 0.59) precision for Exceptional-responder in 3-group classification with 5-fold cross validation in all six datasets constructed, while conventional method relying on tumor PD-L1 immunohistochemistry achieved 0.44-0.44 sensitivity and 0.55-0.67 (median 0.62) precision. This study demonstrated the machine learning models achieved much higher sensitivity and accuracy in identifying Exceptional-responder to nivolumab monotherapy when comparing to conventional method only using companion PD-L1 testing.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [21] Diagnosis and Prognosis of Non-small Cell Lung Cancer based on Machine Learning Algorithms
    Zhou, Yiyi
    Dong, Yuchao
    Sun, Qinying
    Fang, Chen
    [J]. COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2023, 26 (12) : 2170 - 2183
  • [22] Pseudoprogression in Previously Treated Patients with Non-Small Cell Lung Cancer Who Received Nivolumab Monotherapy
    Fujimoto, Daichi
    Yoshioka, Hiroshige
    Kataoka, Yuki
    Morimoto, Takeshi
    Hata, Tae
    Kim, Young Hak
    Tomii, Keisuke
    Ishida, Tadashi
    Hirabayashi, Masataka
    Hara, Satoshi
    Ishitoko, Manabu
    Fukuda, Yasushi
    Hwang, Moon Hee
    Sakai, Naoki
    Fukui, Motonari
    Nakaji, Hitoshi
    Morita, Mitsunori
    Mio, Tadashi
    Yasuda, Takehiro
    Sugita, Takakazu
    Hirai, Toyohiro
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (03) : 468 - 474
  • [23] Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer
    Nguyen Quoc Khanh Le
    Quang Hien Kha
    Van Hiep Nguyen
    Chen, Yung-Chieh
    Cheng, Sho-Jen
    Chen, Cheng-Yu
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
  • [24] Post-treatment changes in hematological parameters predict response to nivolumab monotherapy in non-small cell lung cancer patients
    Khunger, Monica
    Patil, Pradnya Dinkar
    Khunger, Arjun
    Li, Manshi
    Hu, Bo
    Rakshit, Sagar
    Basu, Arnab
    Pennell, Nathan
    Stevenson, James P.
    Elson, Paul
    Panchabhai, Tanmay S.
    Velcheti, Vamsidhar
    [J]. PLOS ONE, 2018, 13 (10):
  • [25] Explainable deep learning-based survival prediction for non-small cell lung cancer patients undergoing radical radiotherapy
    Astley, Joshua R.
    Reilly, James M.
    Robinson, Stephen
    Wild, Jim M.
    Hatton, Matthew Q.
    Tahir, Bilal A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2024, 193
  • [26] Nivolumab, a new hope in non-small cell lung cancer
    Flippot, Ronan
    Fallet, Vincent
    Besse, Benjamin
    Massard, Christophe
    Wislez, Marie
    Vignot, Stephane
    [J]. BULLETIN DU CANCER, 2015, 102 (12) : 1046 - 1052
  • [27] Nivolumab in a patient with HIV and non-small cell lung cancer
    Hentrich, M.
    Schipek-Voigt, K.
    Jaeger, H.
    Schulz, S.
    Schmid, P.
    Stoetzer, O.
    Bojko, P.
    [J]. ONCOLOGY RESEARCH AND TREATMENT, 2017, 40 : 232 - 232
  • [28] Nivolumab plus chemotherapy for non-small cell lung cancer
    Lichert, Frank
    [J]. PNEUMOLOGIE, 2024, 78 (02): : 81 - 81
  • [29] Combination of nivolumab with radiotherapy for non-small cell lung cancer
    Cihan, Y. B.
    [J]. ARCHIVES OF HELLENIC MEDICINE, 2022, 39 (06): : 857 - 858
  • [30] Carcinoembryonic Antigen as a Predictive Biomarker of Response to Nivolumab in Non-small Cell Lung Cancer
    Kataoka, Yuki
    Hirano, Katsuya
    Narabayashi, Tomoko
    Hara, Satoshi
    Fujimoto, Daichi
    Tanaka, Tae
    Ebi, Noriyuki
    Tomii, Keisuke
    Yoshioka, Hiroshige
    [J]. ANTICANCER RESEARCH, 2018, 38 (01) : 559 - 563