Supervised parametric and non-parametric classification of chromosome images

被引:38
|
作者
Sampat, MP
Bovik, AC
Aggarwal, JK [1 ]
Castleman, KR
机构
[1] Univ Texas, Comp & Vis Res Ctr, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas, Lab Image & Video Engn, Dept Biomed Engn, Austin, TX 78712 USA
[3] Univ Texas, Lab Image & Video Engn, Dept Elect & Comp Engn, Austin, TX 78712 USA
[4] LLC, Adv Digital Imaging Res, League City, TX 77573 USA
关键词
M-FISH; nearest neighbor; k-nearest neighbor; maximum likelihood estimation; karyotyping;
D O I
10.1016/j.patcog.2004.09.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a fully automatic chromosome classification algorithm for Multiplex Fluorescence In Situ Hybridization (M-FISH) images using supervised parametric and non-parametric techniques. M-FISH is a recently developed chromosome imaging method in which each chromosome is labelled with 5 fluors (dyes) and a DNA stain. The classification problem is modelled as a 25-class 6-feature pixel-by-pixel classification task. The 25 classes are the 24 types of human chromosomes and the background, while the six features correspond to the brightness of the dyes at each pixel. Maximum likelihood estimation, nearest neighbor and k-nearest neighbor methods are implemented for the classification. The highest classification accuracy is achieved with the k-nearest neighbor method and k = 7 is an optimal value for this classification task. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1209 / 1223
页数:15
相关论文
共 50 条
  • [21] Laplace Beltrami eigen value based classification of normal and Alzheimer MR images using parametric and non-parametric classifiers
    Ramaniharan, Anandh Kilpattu
    Manoharan, Sujatha Chinnaswamy
    Swaminathan, Ramakrishnan
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 208 - 216
  • [22] A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees
    Joy, SM
    Reich, RM
    Reynolds, RT
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (09) : 1835 - 1852
  • [23] Activity recognition using a supervised non-parametric hierarchical HMM
    Raman, Natraj
    Maybank, S. J.
    NEUROCOMPUTING, 2016, 199 : 163 - 177
  • [24] Supervised non-parametric discretization based on Kernel density estimation
    Luis Flores, Jose
    Calvo, Borja
    Perez, Aritz
    PATTERN RECOGNITION LETTERS, 2019, 128 : 496 - 504
  • [25] A Non-parametric Approach to Detect Changes in Aerial Images
    Alves Rodrigues, Marco Tulio
    Balbino, Daniel
    Nascimento, Erickson Rangel
    Schwartz, William Robson
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 116 - 124
  • [26] A non-parametric segmentation methodology for oral videocapillaroscopic images
    Bellavia, Fabio
    Cacioppo, Antonino
    Lupascu, Carmen Alina
    Messina, Pietro
    Scardina, Giuseppe
    Tegolo, Domenico
    Valenti, Cesare
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 114 (03) : 240 - 246
  • [27] A non-parametric approach to anomaly detection in hyperspectral images
    Veracini, Tiziana
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    de Ceglie, Sergio U.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [28] Relative anatomical location for statistical non-parametric brain tissue classification in MR images
    Solanas, E
    Duay, V
    Cuisenaire, O
    Thiran, JP
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 885 - 888
  • [29] Non-parametric and unsupervised Bayesian classification with Bootstrap sampling
    Zribi, M
    IMAGE AND VISION COMPUTING, 2004, 22 (01) : 1 - 8
  • [30] Non-parametric transient classification using adaptive wavelets
    Varughese, Melvin M.
    von Sachs, Rainer
    Stephanou, Michael
    Bassett, Bruce A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (03) : 2848 - 2861