Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites

被引:4
|
作者
Ejaz, Faizan [1 ]
Hwang, Leslie K.
Son, Jangyup [2 ,3 ]
Kim, Jin-Sang [4 ]
Lee, Dong Su [2 ]
Kwon, Beomjin [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[2] Korea Inst Sci & Technol KIST, Funct Composite Mat Res Ctr, Jeonbuk 55324, South Korea
[3] Univ Sci & Technol UST, Div Nano & Informat Technol, KIST Sch, Jeonbuk 55324, South Korea
[4] Korea Inst Sci & Technol, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
基金
新加坡国家研究基金会;
关键词
MECHANICAL-PROPERTIES; CARBON; ENHANCEMENT; FABRICATION;
D O I
10.1038/s41598-022-16867-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article explores the deep learning approach towards approximating the effective electrical and thermal conductivities of copper (Cu)-carbon nanotube (CNT) composites with CNTs aligned to the field direction. Convolutional neural networks (CNN) are trained to map the two-dimensional images of stochastic Cu-CNT networks to corresponding conductivities. The CNN model learns to estimate the Cu-CNT composite conductivities for various CNT volume fractions, interfacial electrical resistances, R-c = 20 omega-20 k omega, and interfacial thermal resistances, R-t,c('') = 10(-10)-10(-7) m(2)K/W. For training the CNNs, the hyperparameters such as learning rate, minibatch size, and hidden layer neurons are optimized. Without iteratively solving the physical governing equations, the trained CNN model approximates the electrical and thermal conductivities within a second with the coefficient of determination (R-2) greater than 98%, which may take longer than 100 min for a convectional numerical simulation. This work demonstrates the potential of the deep learning surrogate model for the complex transport processes in composite materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Copper–graphite composites: thermal expansion, thermal and electrical conductivities, and cross-property connections
    Aref Mazloum
    Jaroslav Kováčik
    Štefan Emmer
    Igor Sevostianov
    Journal of Materials Science, 2016, 51 : 7977 - 7990
  • [42] Synergistic Mixing Effects on Electrical and Mechanical Properties in Homogeneous CNT/Cu Composites
    Tanaka, Kosuke
    Nakano, Takayuki
    Shimamura, Yoshinobu
    Inoue, Yoku
    ACS APPLIED ENGINEERING MATERIALS, 2023, 1 (09): : 2359 - 2367
  • [43] Performance enhancement of graphene assisted CNT/Cu composites for lightweight electrical cables
    Park, Mina
    Lee, Dong-Myeong
    Park, Min
    Park, Seoungwoong
    Lee, Dong Su
    Kim, Tae-Wook
    Lee, Sang Hyun
    Lee, Seoung-Ki
    Jeong, Hyeon Su
    Hong, Byung Hee
    Bae, Sukang
    CARBON, 2021, 179 : 53 - 59
  • [44] Copper-graphite composites: thermal expansion, thermal and electrical conductivities, and cross-property connections
    Mazloum, Aref
    Kovacik, Jaroslav
    Emmer, Stefan
    Sevostianov, Igor
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (17) : 7977 - 7990
  • [45] A Study on Thermal and Electrical Conductivities of Ethylene-Butene Copolymer Composites with Carbon Fibers
    Hamid, Y.
    Svoboda, P.
    INTERNATIONAL POLYMER PROCESSING, 2021, 36 (04) : 417 - 422
  • [46] Classification of Electrical Power System Conditions with Convolutional Neural Networks
    Kiruthika, M.
    Bindu, S.
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2020, 10 (03) : 5759 - 5768
  • [47] Novel Cu–Cr alloy matrix CNT composites with enhanced thermal conductivity
    Jian Kong
    Chao-ying Zhang
    Xiang Cheng
    Applied Physics A, 2013, 112 : 631 - 636
  • [48] Neural Machine Translation of Electrical Engineering Based on Integrated Convolutional Neural Networks
    Liu, Zikang
    Chen, Yuan
    Zhang, Juwei
    ELECTRONICS, 2023, 12 (17)
  • [49] Enhancing the electrical and thermal conductivities of polymer composites via curvilinear fibers: An analytical study
    Salviato, Marco
    Phenisee, Sean E.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (10) : 3231 - 3253
  • [50] A study on electrical and thermal conductivities of ethylene-octene copolymer/expandable graphite composites
    Svoboda, Petr
    Theravalappil, Rajesh
    Poongavalappil, Sameepa
    Vilcakova, Jarmila
    Svobodova, Dagmar
    Mokrejs, Pavel
    Blaha, Antonin
    POLYMER ENGINEERING AND SCIENCE, 2012, 52 (06): : 1241 - 1249