Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites

被引:4
|
作者
Ejaz, Faizan [1 ]
Hwang, Leslie K.
Son, Jangyup [2 ,3 ]
Kim, Jin-Sang [4 ]
Lee, Dong Su [2 ]
Kwon, Beomjin [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[2] Korea Inst Sci & Technol KIST, Funct Composite Mat Res Ctr, Jeonbuk 55324, South Korea
[3] Univ Sci & Technol UST, Div Nano & Informat Technol, KIST Sch, Jeonbuk 55324, South Korea
[4] Korea Inst Sci & Technol, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
基金
新加坡国家研究基金会;
关键词
MECHANICAL-PROPERTIES; CARBON; ENHANCEMENT; FABRICATION;
D O I
10.1038/s41598-022-16867-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article explores the deep learning approach towards approximating the effective electrical and thermal conductivities of copper (Cu)-carbon nanotube (CNT) composites with CNTs aligned to the field direction. Convolutional neural networks (CNN) are trained to map the two-dimensional images of stochastic Cu-CNT networks to corresponding conductivities. The CNN model learns to estimate the Cu-CNT composite conductivities for various CNT volume fractions, interfacial electrical resistances, R-c = 20 omega-20 k omega, and interfacial thermal resistances, R-t,c('') = 10(-10)-10(-7) m(2)K/W. For training the CNNs, the hyperparameters such as learning rate, minibatch size, and hidden layer neurons are optimized. Without iteratively solving the physical governing equations, the trained CNN model approximates the electrical and thermal conductivities within a second with the coefficient of determination (R-2) greater than 98%, which may take longer than 100 min for a convectional numerical simulation. This work demonstrates the potential of the deep learning surrogate model for the complex transport processes in composite materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] On the thermal expansion of CNT/Cu composites for electronic packaging applications
    Ke Chu
    Chengchang Jia
    Applied Physics A, 2013, 111 : 439 - 443
  • [22] The percolation exponents for electrical and thermal conductivities and the permittivity and permeability of binary composites
    McLachlan, David S.
    PHYSICA B-CONDENSED MATTER, 2021, 606
  • [23] Transfer of learning in convolutional neural networks for thermal image classification in Electrical Transformer Rooms
    Elgohary, Abdallah A.
    Badr, Mohamed M.
    Elmalhy, Noha A.
    Hamdy, Ragi A.
    Ahmed, Shehab
    Mordi, Ahmed A.
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 423 - 436
  • [24] EFFECT OF MICROSTRUCTURE CONTROL ON THERMAL AND ELECTRICAL CONDUCTIVITIES OF CNF/Al COMPOSITES
    Sasaki, G.
    Omuro, Y.
    Choi, Y. B.
    Sugio, K.
    Matsugi, K.
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [25] Microstructure and thermal and electric conductivities of high dense Mo/Cu composites
    Chen, GQ
    Wu, GH
    Zhu, DZ
    Zhang, Q
    Jiang, LT
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 : 110 - 114
  • [26] Prediction of thermal conductivities of fibre reinforced composites using a thermal-electrical analogy
    Cho, YJ
    Youn, JR
    Kang, TJ
    Kim, SM
    POLYMERS & POLYMER COMPOSITES, 2005, 13 (06): : 637 - 644
  • [27] A study on wafer scalable, industrially applicable CNT based nanocomposites of Al-CNT, Cu-CNT, Ti-CNT, and Ni-CNT as thermal interface materials synthesised by thin film techniques
    Krishna, Ankit
    Aravinda, L. S.
    Murugan, A.
    Kumar, N. Sharath
    Sankar, Mamilla Ravi
    Nagahanumaiah
    Reddy, K. Niranjan
    Balashanmugam, N.
    SURFACE & COATINGS TECHNOLOGY, 2022, 429
  • [28] Mechanisms of electrical conductivity in CNT/silicone composites designed for neural interfacing
    Barshutina, M. N.
    Kirichenko, S. O.
    Wodolajski, V. A.
    Musienko, P. E.
    MATERIALS LETTERS, 2019, 236 : 183 - 186
  • [29] Fabrication and Thermal Characterization of Composite Cu-CNT Micropillars for Capillary-driven Phase-Change Cooling Devices
    Rojo, G.
    Ghanbari, S.
    Darabi, J.
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2019, 23 (04) : 317 - 333
  • [30] The Effects of Cryomilling CNTs on the Thermal and Electrical Properties of CNT/PMMA Composites
    Mittal, Garima
    Rhee, Kyong Yop
    Park, Soo Jin
    POLYMERS, 2016, 8 (05)