Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites

被引:4
|
作者
Ejaz, Faizan [1 ]
Hwang, Leslie K.
Son, Jangyup [2 ,3 ]
Kim, Jin-Sang [4 ]
Lee, Dong Su [2 ]
Kwon, Beomjin [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[2] Korea Inst Sci & Technol KIST, Funct Composite Mat Res Ctr, Jeonbuk 55324, South Korea
[3] Univ Sci & Technol UST, Div Nano & Informat Technol, KIST Sch, Jeonbuk 55324, South Korea
[4] Korea Inst Sci & Technol, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
基金
新加坡国家研究基金会;
关键词
MECHANICAL-PROPERTIES; CARBON; ENHANCEMENT; FABRICATION;
D O I
10.1038/s41598-022-16867-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article explores the deep learning approach towards approximating the effective electrical and thermal conductivities of copper (Cu)-carbon nanotube (CNT) composites with CNTs aligned to the field direction. Convolutional neural networks (CNN) are trained to map the two-dimensional images of stochastic Cu-CNT networks to corresponding conductivities. The CNN model learns to estimate the Cu-CNT composite conductivities for various CNT volume fractions, interfacial electrical resistances, R-c = 20 omega-20 k omega, and interfacial thermal resistances, R-t,c('') = 10(-10)-10(-7) m(2)K/W. For training the CNNs, the hyperparameters such as learning rate, minibatch size, and hidden layer neurons are optimized. Without iteratively solving the physical governing equations, the trained CNN model approximates the electrical and thermal conductivities within a second with the coefficient of determination (R-2) greater than 98%, which may take longer than 100 min for a convectional numerical simulation. This work demonstrates the potential of the deep learning surrogate model for the complex transport processes in composite materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites
    Faizan Ejaz
    Leslie K. Hwang
    Jangyup Son
    Jin-Sang Kim
    Dong Su Lee
    Beomjin Kwon
    Scientific Reports, 12
  • [2] Effect of SPS consolidation parameters on submicron Cu and Cu-CNT composites for thermal management
    Sule, R.
    Olubambi, P. A.
    Sigalas, I.
    Asante, J. K. O.
    Garrett, J. C.
    POWDER TECHNOLOGY, 2014, 258 : 198 - 205
  • [3] A Modeling Study of Stacked Cu-CNT TSV on Electrical, Thermal, and Reliability Analysis
    Xu, Baohui
    Chen, Rongmei
    Zhou, Jiuren
    Liang, Jie
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (01) : 184 - 191
  • [4] Mechanical, tribological and electrical properties of Cu-CNT composites fabricated by flake powder metallurgy method
    Akbarpour, M. R.
    Alipour, S.
    Farvizi, M.
    Kim, H. S.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2019, 19 (03) : 694 - 706
  • [5] On the resistivity, temperature coefficient of resistance, and ampacity of Cu-CNT and Ni-CNT composites
    Duhain, Antoine
    Lamblin, Guillaume
    Lenoble, Damien
    RSC ADVANCES, 2021, 11 (63) : 40159 - 40172
  • [6] RESEARCH AND CHARACTERIZATION OF Cu - GRAPHENE, Cu-CNT's COMPOSITES OBTAINED BY MECHANICAL SYNTHESIS
    Kwasniewski, P.
    Kiesiewicz, G.
    Knych, T.
    Mamala, A.
    Gnielczyk, M.
    Kawecki, A.
    Smyrak, B.
    Sciezor, W.
    Smaga-Sieja, E.
    ARCHIVES OF METALLURGY AND MATERIALS, 2015, 60 (03) : 1929 - 1933
  • [7] Electrical Modeling and Analysis of Cu-CNT Heterogeneous Coaxial Through-Silicon Vias
    Lu, Qijun
    Zhu, Zhangming
    Yang, Yintang
    Ding, Ruixue
    Li, Yuejin
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2017, 16 (04) : 695 - 702
  • [8] A two-dimensional finite element model for Cu-CNT composite: The impact of interface resistances on electrical and thermal transports
    Ejaz, Faizan
    Kang, Munku
    Son, Jangyup
    Kim, Jin-Sang
    Lee, Dong Su
    Kwon, Beomjin
    MATERIALIA, 2022, 24
  • [9] Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process
    Guler, Omer
    MATERIALS TESTING, 2014, 56 (09) : 662 - 666
  • [10] Electrical and thermal conductivities of the Cu-CF composite
    Korab, J.
    Krcho, S.
    Stefanik, P.
    Kovacik, J.
    JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (08) : 1023 - 1030