Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation

被引:8
|
作者
Matthes, Daniel [1 ]
Soellner, Benjamin [1 ]
机构
[1] Tech Univ Munich, Zentrum Math M8, Boltzmannstr 3, D-85747 Garching, Germany
来源
关键词
EQUATIONS; SCHEME; DIFFEOMORPHISMS; SPACES; FLOWS;
D O I
10.1007/978-3-319-49262-9_12
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Lagrangian discretization for nonlinear aggregation-diffusion equations in one space dimension is presented, and its convergence is rigorously analyzed. In comparison to related works by the first author and Osberger (ESAIM Math Model Numer Anal 48: 697-726, 2014; Found Comput Math 1-54, 2015) on Lagrangian schemes for drift-diffusion equations, convergence is proven directly on the level on the Lagrangian maps, without passage through the density formulation.
引用
收藏
页码:313 / 351
页数:39
相关论文
共 50 条
  • [41] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    Acta Mathematica Sinica, English Series, 2009, 25
  • [42] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250
  • [43] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275
  • [44] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazd, Hadi Sadoghi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (11): : 7247 - 7250
  • [45] Drift-diffusion kinetics of a confined colloid
    Leroyer, Yves
    Wuerger, Alois
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (19)
  • [46] The bipolar quantum drift-diffusion model
    Chen, Xiu Qing
    Chen, Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (04) : 617 - 638
  • [47] A decoupled algorithm for a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (11) : 1291 - 1313
  • [48] ALGEBRAIC MICROSCOPIC APPROACH TO DRIFT-DIFFUSION
    ORLOWSKI, M
    MICROELECTRONICS JOURNAL, 1995, 26 (2-3) : 243 - 248
  • [49] Asymmetric random walks and drift-diffusion
    Holmes, M.
    EPL, 2013, 102 (03)
  • [50] Kinetic models for chemotaxis and their drift-diffusion limits
    Chalub, FACC
    Markowich, PA
    Perthame, B
    Schmeiser, C
    MONATSHEFTE FUR MATHEMATIK, 2004, 142 (1-2): : 123 - 141