Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation

被引:8
|
作者
Matthes, Daniel [1 ]
Soellner, Benjamin [1 ]
机构
[1] Tech Univ Munich, Zentrum Math M8, Boltzmannstr 3, D-85747 Garching, Germany
来源
关键词
EQUATIONS; SCHEME; DIFFEOMORPHISMS; SPACES; FLOWS;
D O I
10.1007/978-3-319-49262-9_12
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Lagrangian discretization for nonlinear aggregation-diffusion equations in one space dimension is presented, and its convergence is rigorously analyzed. In comparison to related works by the first author and Osberger (ESAIM Math Model Numer Anal 48: 697-726, 2014; Found Comput Math 1-54, 2015) on Lagrangian schemes for drift-diffusion equations, convergence is proven directly on the level on the Lagrangian maps, without passage through the density formulation.
引用
收藏
页码:313 / 351
页数:39
相关论文
共 50 条
  • [21] A discretization scheme for an extended drift-diffusion model including trap-assisted phenomena
    Bosisio, F
    Micheletti, S
    Sacco, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 159 (02) : 197 - 212
  • [22] Drift-diffusion equations and applications
    Allegretto, W
    MATHEMATICAL PROBLEMS IN SEMINCONDUCTOR PHYSICS, 2003, 1823 : 57 - 95
  • [23] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [24] Modeling of drift-diffusion systems
    Holger Stephan
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 33 - 53
  • [25] Drift-Diffusion MOSFET Modelling
    Bekaddour, A.
    Bouazza, B.
    Chabanne-Sari, N. E.
    AFRICAN REVIEW OF PHYSICS, 2008, 2 : 3 - 3
  • [26] Modeling of drift-diffusion systems
    Stephan, Holger
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01): : 33 - 53
  • [27] The drift-diffusion equation revisited
    Assad, F
    Banoo, K
    Lundstrom, M
    SOLID-STATE ELECTRONICS, 1998, 42 (03) : 283 - 295
  • [28] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [29] Anatomy of the drift-diffusion relationship
    Bringuier, E
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (04): : 959 - 964
  • [30] A CONVERGENT LAGRANGIAN DISCRETIZATION FOR p-WASSERSTEIN AND FLUX-LIMITED DIFFUSION EQUATIONS
    Soellner, Benjamin
    Junge, Oliver
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (09) : 4227 - 4256