Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation

被引:8
|
作者
Matthes, Daniel [1 ]
Soellner, Benjamin [1 ]
机构
[1] Tech Univ Munich, Zentrum Math M8, Boltzmannstr 3, D-85747 Garching, Germany
来源
关键词
EQUATIONS; SCHEME; DIFFEOMORPHISMS; SPACES; FLOWS;
D O I
10.1007/978-3-319-49262-9_12
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Lagrangian discretization for nonlinear aggregation-diffusion equations in one space dimension is presented, and its convergence is rigorously analyzed. In comparison to related works by the first author and Osberger (ESAIM Math Model Numer Anal 48: 697-726, 2014; Found Comput Math 1-54, 2015) on Lagrangian schemes for drift-diffusion equations, convergence is proven directly on the level on the Lagrangian maps, without passage through the density formulation.
引用
收藏
页码:313 / 351
页数:39
相关论文
共 50 条
  • [1] Entropic discretization of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1828 - 1849
  • [2] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Koprucki, Thomas
    Gaertner, Klaus
    OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (07) : 791 - 796
  • [3] Potential Theory for Nonlocal Drift-Diffusion Equations
    Nguyen, Quoc-Hung
    Nowak, Simon
    Sire, Yannick
    Weidner, Marvin
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [4] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Koprucki, Thomas
    Gaertner, Klaus
    2012 12TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2012, : 103 - 104
  • [5] Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Thomas Koprucki
    Klaus Gärtner
    Optical and Quantum Electronics, 2013, 45 : 791 - 796
  • [6] ON THE REGULARITY ISSUES OF A CLASS OF DRIFT-DIFFUSION EQUATIONS WITH NONLOCAL DIFFUSION
    Miao, Changxing
    Xue, Liutang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) : 2927 - 2970
  • [7] Nonlocal transport of heat in equilibrium drift-diffusion systems
    Stabler, Florian
    Sukhorukov, Eugene
    PHYSICAL REVIEW B, 2023, 107 (04)
  • [8] Asymmetry of nonlocal dissipation: From drift-diffusion to hydrodynamics
    Tikhonov, K. S.
    Gornyi, I., V
    Kachorovskii, V. Yu
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2019, 100 (20)
  • [9] Adaptive time discretization for a transient quantum drift-diffusion model
    Shimada, T.
    Odanaka, S.
    SISPAD 2007: SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2007, 2007, : 337 - 340
  • [10] Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method
    Sakowski, Konrad
    Marcinkowski, Leszek
    Strak, Pawel
    Kempisty, Pawel
    Krukowski, Stanislaw
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT II, 2016, 9574 : 391 - 400