High-Temperature Skin Softening Materials Overcoming the Trade-Off between Thermal Conductivity and Thermal Contact Resistance

被引:20
|
作者
Kim, Taehun [1 ]
Kim, Seongkyun [1 ]
Kim, Eungchul [1 ]
Kim, Taesung [1 ,2 ]
Cho, Jungwan [1 ]
Song, Changsik [3 ]
Baik, Seunghyun [1 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
elastic modulus; skin softening materials; thermal conductivity; thermal contact resistance; trade-off; GRAPHITE NANOPLATELET; INTERFACE MATERIALS; CARBON; TRANSPORT; NITRIDE; PERFORMANCE; COMPOSITES; GRAPHENE;
D O I
10.1002/smll.202102128
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The trade-off between thermal conductivity (kappa) and thermal contact resistance (R-c) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm(-2)K(-1)) for isotropic pad-type interface materials is introduced. A highly conductive hard core is constructed by incorporating Ag flakes and silver nanoparticle-decorated multiwalled carbon nanotubes in thermosetting epoxy (EP). The thin soft skin is composed of filler-embedded thermoplastic poly(ethylene-co-vinyl acetate) (PEVA). The kappa (82.8 W m(-1)K(-1)) of the PEVA-EP-PEVA interface material is only slightly compromised, compared with that (106.5 W m(-1)K(-1)) of the EP core (386 mu m). However, the elastic modulus (E = 2.10 GPa) at the skin is significantly smaller than the EP (26.28 GPa), enhancing conformality and decreasing R-c from 108.41 to 78.73 mm(2) K W-1. The thermoplastic skin is further softened at an elevated temperature (100 degrees C), dramatically decreasing E (0.19 GPa) and R-c (0.17 mm(2) K W-1) with little change in kappa, overcoming the trade-off relationship and enhancing the total thermal conductance by 2030%. The successful heat dissipation and applicability to the continuous manufacturing process demonstrate excellent feasibility as future thermal management materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] High-Temperature Thermal Conductivity of Thulium Orthovanadate
    O. N. Kondrat’eva
    G. E. Nikiforova
    M. N. Smirnova
    A. V. Khoroshilov
    K. V. Petrova
    V. M. Gurevich
    Doklady Physical Chemistry, 2021, 500 : 101 - 104
  • [32] HIGH-TEMPERATURE VISCOSITY AND THERMAL CONDUCTIVITY OF ARGON
    KULIK, PP
    HIGH TEMPERATURE, 1971, 9 (02) : 389 - &
  • [33] THERMAL-CONDUCTIVITY OF HIGH-TEMPERATURE SUPERCONDUCTORS
    REGUEIRO, MDN
    CASTELLO, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (12): : 2003 - 2035
  • [34] High-temperature thermal conductivity of ceramic fibers
    Gumen, V
    ul Haq, A
    Illyas, B
    Maqsood, A
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2001, 10 (04) : 475 - 478
  • [35] HIGH-TEMPERATURE THERMAL DIFFUSIVITY AND CONDUCTIVITY OF COBALT
    ZINOVYEV, VE
    KRENTSIS, RP
    PETROVA, LN
    GELD, PV
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1968, 26 (01): : 57 - &
  • [36] High-temperature thermal conductivity of ceramic fibers
    V. Gumen
    B. Illyas
    A. Maqsood
    A. ul Haq
    Journal of Materials Engineering and Performance, 2001, 10 : 475 - 478
  • [37] High-temperature thermal conductivity of thermoelectric clathrates
    Beekman, Matt
    VanderGraaff, Aaron
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (20)
  • [38] High-temperature tests of heat-insulating refractory materials for thermal conductivity
    Skidan, BS
    Borisov, SA
    REFRACTORIES AND INDUSTRIAL CERAMICS, 1999, 40 (3-4) : 166 - 169
  • [39] High-Temperature tests of heat-insulating refractory materials for thermal conductivity
    B. S. Skidan
    S. A. Borisov
    Refractories and Industrial Ceramics, 1999, 40 : 166 - 169
  • [40] Trade-off between thermal sensitivity, hypoxia tolerance and growth in fish
    Roze, Thomas
    Christen, Felix
    Amerand, Aline
    Claireaux, Guy
    JOURNAL OF THERMAL BIOLOGY, 2013, 38 (02) : 98 - 106